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Abstract
This paper addresses complexity problems in rational verification and synthesis for multi-player
games played on weighted graphs, where the objective of each player is to minimize the cost of
reaching a specific set of target vertices. In these games, one player, referred to as the system,
declares his strategy upfront. The other players, composing the environment, then rationally make
their moves according to their objectives. The rational behavior of these responding players is
captured through two models: they opt for strategies that either represent a Nash equilibrium or
lead to a play with a Pareto-optimal cost tuple.
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1 Introduction

Nowadays, formal methods play a crucial role in ensuring the reliability of critical computer
systems. Still, the application of formal methods on a large scale remains elusive in certain
areas, notably in multi-agent systems. Those systems pose a significant challenge for formal
verification and automatic synthesis because of their heterogeneous nature, encompassing
everything from conventional reactive code segments to fully autonomous robots and even
human operators. Crafting formal models that accurately represent the varied components
within these systems is often a too complex task.

Although constructing detailed operational models for humans or sophisticated au-
tonomous robots might be problematic, it is often more feasible to identify the overarching
goals that those agents pursue. Incorporating these goals is crucial in the design and validation
process of systems that interact with such entities. Typically, a system is not expected to
function flawlessly under all conditions but rather in scenarios where the agents it interacts
with act in alignment with their objectives, i.e., they behave rationally. Rational synthesis
focuses on creating a system that meets its specifications against any behavior of environ-
mental agents that is guided by their goals (and not against any of their behaviors). Rational
verification studies the problem of ensuring that a system enforces certain correctness proper-
ties, not in all conceivable scenarios, but specifically in scenarios where environmental agents
behave in accordance with their objectives.

Rationality can be modeled in various ways. In this paper, we focus on two general
approaches. The first approach comes from game theory where rationality is modeled by the
concept of equilibrium, such as Nash equilibria (NE) [39] or subgame perfect equilibria (SPE),
a refinement of NEs [40]. The second approach treats the environment as a single agent but
with multiple, sometimes conflicting, goals, aiming for behaviors that achieve a Pareto-optimal
balance among these objectives. The concept of Pareto-optimality (PO) and its application

ar
X

iv
:2

40
3.

00
39

9v
4 

 [
cs

.G
T

] 
 2

 J
ul

 2
02

4

mailto:veronique.bruyere@umons.ac.be
https://informatique-umons.be/bruyere-veronique/ 
https://orcid.org/0000-0002-9680-9140
mailto:christophe.grandmont@umons.ac.be
https://chrisgdt.github.io/ 
https://orcid.org/0009-0009-4573-0123
mailto:jean-francois.raskin@ulb.be
https://verif.ulb.ac.be/jfr/ 
https://orcid.org/0000-0002-3673-1097


2 As Soon as Possible but Rationally

Table 1 Summary of complexity results.

Non-coop. verif. Universal non-coop. verif. Coop. synthesis Non-coop. synthesis
PO, weights ΠP

2-complete PSPACE-complete PSPACE-complete NEXPTIME-complete [11]
PO, qualitative ΠP

2-complete PSPACE-complete PSPACE-complete NEXPTIME-complete [18]
NE, weights coNP-complete coNP-complete NP-complete Unknown, EXPTIME-hard1)

NE, qualitative coNP-complete [28] coNP-complete [28] NP-complete [21] PSPACE-complete [21]
1) For the important special case of one-player environments, we provide an algorithm that runs in EXPTIME and we can prove

PSPACE-hardness. The EXPTIME-hardness of the general case already holds for two-player environments.

in multi-objective analysis have been explored primarily in the field of optimization [41], but
also in formal methods [2, 4]. These two notions of rationality are different in nature: in
the first setting, each component of the environment playing an equilibrium is considered to
be an independent selfish individual, excluding cooperation scenarios, while in the second
setting, several components of the environment can collaborate and agree on trade-offs.
The challenge lies in adapting these concepts to reactive systems characterized by ongoing,
non-terminating interactions with their environment. This necessitates the transition from
two-player zero-sum games on graphs, the classical approach used to model a fully adversarial
environment (see e.g. [42]), to the more complex setting of multi-player non zero-sum games
on graphs used to model environments composed of various rational agents.

Rational synthesis and rational verification have attracted large attention recently, see
e.g. [7, 19, 21, 26, 29, 30, 36, 37]. But the results obtained so far, with a few exceptions
that we detail below, are limited to the qualitative setting formalized as Boolean outcomes
associated with ω-regular objectives. Those objectives are either specified using linear
temporal specifications or automata over infinite words (like parity automata). The complexity
of those problems is now well understood (with only a few complexity gaps remaining, see
e.g. [21, 37]). The methods to solve those problems and get completeness results for worst-
case complexity are either based on automata theory (using mainly automata over infinite
trees) or by reduction to zero-sum games. Quantitative objectives are less studied and
revealed to be much more challenging. For instance, it is only very recently that the
rational verification problem was studied, for SPEs in non zero-sum games with mean-payoff,
energy, and discounted-sum objectives in [7], for an LTL specification in multi-agent systems
that behave according to an NE with mean-payoff objectives in [30] or with quantitative
probabilistic LTL objectives in [31]. In [1], the rational synthesis problem was studied for
the quantitative extension LTL[F ] of LTL where the Boolean operators are replaced with
arbitrary functions mapping binary tuples into the interval [0, 1].

In this paper, we consider quantitative reachability objectives. Our choice for studying
these objectives was guided by their fundamental nature and also by their relative simplicity.
Nevertheless, as we will see, they are challenging for both rational synthesis and rational
verification. Indeed, to obtain worst-case optimal algorithms and establish completeness
results, we had to resort to the use of innovative theoretical tools, more advanced than those
necessary for the qualitative framework. In our endeavor, we have established the exact
complexity of most studied decision problems in rational synthesis and rational verification.

Technical Contributions. In this work, we explore both verification and synthesis problems
through the lens of rationality, defined by Pareto-optimality and Nash equilibria, for quanti-
tative reachability objectives. For the synthesis problem, we also consider the cooperative
variant where the environment cooperates with the system: we want to decide whether
the system has a strategy and the environment a rational response to this strategy such
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that the objective of the system is enforced. Our results are presented in Section 1, noting
that all results lacking explicit references are, to our knowledge, novel contributions. For
completeness, the table includes (new and known) results for the qualitative scenario.

The results for PO rationality are as follows. (1) For the verification problems, we
assume that the behavior of the system is formalized by a nondeterministic Mealy machine,
used to represent a (usually infinite) set of its possible implementations. For each of those
implementations, we verify that the quantitative reachability objective of the system is met
against any rational behavior of the environment. We establish that this problem is PSPACE-
complete. To obtain the upper bound, we rely on a genuine combination of techniques based
on Parikh automata and a recursive PSPACE algorithm (for positive Boolean combinations of
bounded safety objectives, a problem of independent interest). Parikh automata are used to
guess a compact representation of certificates which are paths of possibly exponential length
in the size of the problem input. When the Mealy machine is deterministic, we show that the
complexity goes down to ΠP

2 -completeness, as the previous PSPACE algorithm is replaced
by a coNP oracle. (2) For the synthesis problems, we only consider the cooperative version
which we prove to be PSPACE-complete, as the non-cooperative version was established to
be NEXPTIME-complete in [11].

The results for NE rationality are as follows. (1) We establish that, surprisingly, the
verification problems are coNP-complete both for the general case of a nondeterministic
Mealy machine and for the special case where it is deterministic. The upper bounds for
those problems are again based on Parikh automata certificates but here there is no need to
use a coNP oracle. (2) For the synthesis problems, the landscape is more challenging. For
the cooperative case, we were able to establish that the problem is NP-complete. For the
non-cooperative case, we have partially solved the problem and established the following
results. When the environment is composed of a single rational player, the problem is in
EXPTIME and PSPACE-hard. For an environment with at least two players, we show that
the problem is EXPTIME-hard but we leave its decidability open. The lower bounds are
obtained using an elegant reduction from countdown games [32]. We give indications in the
paper why the problem is difficult to solve and why classical automata-theoretic methods
may not be sufficient (if the problem is decidable).

In this paper, we focus on nonnegative weights as we show that considering arbitrary
weights leads to undecidability of the synthesis problems. We also focus on NEs instead of
SPEs, even if the latter are a better concept to model rational behavior in games played on
graphs. Indeed, it is well-known that SPEs pose greater challenges than NEs. So, starting
with NEs offers a better initial step for the algorithmic treatment of rational verification and
synthesis in quantitative scenarios, an area that remains largely unexplored.

Related Work. The survey [16] presents several results about different game models and
different kinds of objectives related to reachability. Quantitative objectives in two-player
zero-sum games were largely studied, see e.g. [13, 20, 22], even if exact complexity results
are often elusive due to the intricate nature of the problems (e.g. the exact complexity of
solving mean-payoff games is still an open problem). In multi-player non zero-sum games,
the (constrained) existence of equilibria is also well studied. The existence of simple NEs
was established in [12] for mean-payoff and discounted-sum objectives. No decision problem
is considered in that paper. The constrained existence of SPEs in quantitative reachability
games was proved PSPACE-complete in [8]. We prove here that the complexity is lower when
we use NEs to model rationality, as we obtain NP-completeness for the related cooperative
synthesis problem. Deciding the constrained existence of SPEs was recently solved for
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quantitative reachability games in [9] and for mean-payoff games in [5, 6]. The cooperative
and non-cooperative rational synthesis problems were studied in [25] for games with mean-
payoff and discounted-sum objectives when the environment is composed of a single player.
The mean-payoff case was proved to be NP-complete and the discounted-sum case was linked
to the open target discounted sum problem, which explains the difficulty of solving the
problem in this case.

Structure of the Paper. The background is given in Section 2. The formal definitions of
the studied problems and our main complexity results are stated in Section 3. The proofs of
our results are given for PO rationality in Section 4, and for NE rationality in Section 5. We
give a conclusion and future work in Section 6.

2 Background

Arenas and Plays. A (finite) arena A is a tuple (V,E,P, (Vi)i∈P) where V is a finite set of
vertices, E ⊆ V × V is a set of edges, P is a finite set of players, and (Vi)i∈P is a partition of
V , where Vi is the set of vertices owned by player i. We assume that v ∈ V has at least one
successor, i.e., the set succ(v) = {v′ ∈ V | (v, v′) ∈ E} is nonempty.

We define a play π ∈ V ω (resp. a history h ∈ V ∗) as an infinite (resp. finite) sequence of
vertices π0π1 . . . such that (πi, πi+1) ∈ E for any two consecutive vertices πi, πi+1. The length
|h| of a history h is the number of its vertices. The empty history is denoted ε. Given a play
π and two indexes k < k′, we write π≤k the prefix π0 . . . πk of π, π≥k the suffix πkπk+1 . . . of
π, and π[k,k′[ for πk . . . πk′−1. We denote the first vertex of π by first(π). These notations are
naturally adapted to histories. We also write last(h) for the last vertex of a history h ̸= ε. The
set of all plays (resp. histories) of an arena A is denoted PlaysA ⊆ V ω (resp. HistA ⊆ V ∗), and
we write Plays (resp. Hist) when the context is clear. For i ∈ P , the set Histi ⊆ V ∗Vi represents
all histories ending in a vertex v ∈ Vi. That is, Histi = {h ∈ Hist | h ̸= ε and last(h) ∈ Vi}.

We can concatenate two nonempty histories h1 and h2 into a single one, denoted h1 · h2
or h1h2 if (last(h1), first(h2)) ∈ E. When a history can be concatenated to itself, we call it a
cycle. Furthermore, a play π = µνν · · · = µ(ν)ω where µν ∈ Hist with ν a cycle, is called a
lasso. The length of π is then the length of µν.2 Given a play π, a cycle along π refers to a
sequence π[m,n[ with πm = πn. We denote Occ(π) = {v ∈ V | ∃n ∈ N, v = πn} the set of all
vertices occurring along π, and we say that π visits or reaches a vertex v ∈ Occ(π) or a set
T such that T ∩ Occ(π) ̸= ∅. The previous notions extend to histories.

Given an arena A, if we fix an initial vertex v0 ∈ V , we say that A is initialized and we
denote by Plays(v0) (resp. Hist(v0)) all its plays (resp. nonempty histories) starting with v0.
An arena is called weighted if it is augmented with a non-negative weight function wi : E → N
for each player i. We denote by W the greatest weight, i.e., W = max{wi(e) | e ∈ E, i ∈ P}.
We extend wi to any history h = π0 . . . πn such that wi(h) =

∑n
j=1 wi((πj−1, πj)).

Reachability Games. A reachability game is a tuple G = (A, (Ti)i∈P) where A is a weighted
arena and Ti ⊆ V is a target set for each i ∈ P . We define a cost function costi : Plays → N∪
{+∞} for each player i, such that for all plays π = π0π1 · · · ∈ Plays, costi(π) = wi(π0 . . . πn)
with n the smallest index such that πn ∈ Ti, if it exists and costi(π) = +∞ otherwise.

The reachability objective of player i is to minimize this cost as much as possible, i.e.,
given two plays π, π′ such that costi(π) < costi(π′), player i prefers π to π′. We extend < to

2 To have a well-defined length for a lasso π, we assume that π = µ(ν)ω with µν of minimal length.
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tuples of costs as follows: (costi(π))i∈P < (costi(π′))i∈P if costi(π) ≤ costi(π′) for all i ∈ P
and there exists some j ∈ P such that costj(π) < costj(π′). Given a play π, we denote by
Visit(π) the set of players i such that π visits Ti, i.e., Visit(π) = {i ∈ P | costi(π) < +∞}.
When for all i ∈ P and e ∈ E, wi(e) = 0, we speak of qualitative reachability games, since
costi(π) = 0 if Occ(π) ∩ Ti ̸= ∅ and +∞ otherwise.

Strategies and Mealy Machines. Let A = (V,E,P, (Vi)i∈P) be an arena. A strategy
σi : Histi → V for player i maps any history h ∈ Histi to a vertex v ∈ succ(last(h)), which
is the next vertex that player i chooses to move to after reaching the last vertex in h. The
set of all strategies of player i is denoted Σi. A play π = π0π1 . . . is consistent with σi if
πk+1 = σi(π0 . . . πk) for all k ∈ N such that πk ∈ Vi. Consistency is naturally extended to
histories. A tuple of strategies σ = (σi)i∈P with σi ∈ Σi, is called a strategy profile. In
an arena initialized at v0, we limit the domain of each strategy σi to Histi(v0); the play π
starting from v0 and consistent with each σi is denoted ⟨σ⟩v0 and called outcome.

Given an initialized arena A, we can encode a strategy or a set of strategies by a (finite)
nondeterministic Mealy machine [7, 19] M = (M,m0, δ, τ) on A, where M is a finite set of
memory states, m0 ∈ M is the initial state, δ : M × V → 2M is the update function, and
τ : M × Vi → 2V is the next-move function. Such a machine embeds a (possibly infinite) set
of strategies σi for player i, called compatible strategies. Formally, σi is compatible with M
if there exists a mapping h 7→ mh such that mhv ∈ δ(mh, v) for every hv ∈ Hist(v0) (with
mh = m0 when h is empty), and when v ∈ Vi, σi(hv) ∈ τ(mh, v). An example of such a
machine M is given in Appendix A. We denote by JMK the set of all strategies compatible
with M. The memory size of M is equal to |M |. We say that M is deterministic when the
image of both functions δ and τ is a singleton. Thus when M is deterministic, JMK = {σi}
and σi is called finite-memory, and when additionally |M | = 1, σi is called memoryless.

3 Studied Problems

In this section, within the context of rational synthesis and verification, we consider a reacha-
bility game G = (A, (Ti)i∈P) with A an initialized weighted arena and P = {0, 1, . . . , t} such
that player 0 is a specific player, often called system or leader, and the other players 1, . . . , t
compose the environment and are called followers. Player 0 announces his strategy σ0 at the
beginning of the game and is not allowed to change it according to the behavior of the other
players. The response of those players to σ0 is supposed to be rational, where the rationality
can be described as the outcome of a Nash equilibrium [39] or as a Pareto-optimal play [18].

Nash Equilibria. A strategy profile for the environment is a Nash equilibrium if no player has
an incentive to unilaterally deviate from this profile. In other words, no player can improve his
cost by switching to a different strategy, assuming that the other players stick to their current
strategies. Formally, given the initial vertex v0 and a strategy σ0 announced by player 0,
a strategy profile σ = (σi)i∈P is called a 0-fixed Nash equilibrium (0-fixed NE) if for every
player i ∈ P \{0} and every strategy τi ∈ Σi, it holds that costi(⟨σ⟩v0) ≤ costi(⟨τi, σ−i⟩v0),
where σ−i denotes (σj)j∈P\{i}, i.e., τi is not a profitable deviation. We also say that σ is a
σ0-fixed NE to emphasize the strategy σ0 of player 0.

Pareto-Optimality. When all players collaborate to obtain a best cost for everyone, we
need another concept of rationality. In that case, we suppose that the players in P \{0}
form a single player, player 1, that has a tuple of targets sets (Ti)i∈{1,...,t}. For each
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play π ∈ Plays(v0), player 1 gets a cost tuple costenv(π) = (costi(π))i∈{1,...,t}, and prefers π
to π′ if costenv(π) < costenv(π′) for the componentwise partial order < over (N ∪ {+∞})t.
Given such a modified game and a strategy σ0 announced by player 0, we consider the set Cσ0

of cost tuples of plays consistent with σ0 that are Pareto-optimal for player 1, i.e., minimal
with respect to <. Hence, Cσ0 = min{costenv(π) | π ∈ Plays(v0) consistent with σ0}. Notice
that Cσ0 is an antichain. A cost tuple p (called cost in the sequel) is said to be σ0-fixed
Pareto-optimal (σ0-fixed PO or simply 0-fixed PO) if p ∈ Cσ0 . Similarly, a play is said to be
σ0-fixed PO if its cost is σ0-fixed PO.

In some problems studied in this paper, we will have to consider games such that all
vertices owned by player 0 have only one successor, which means that player 0 has no choice
but to choose this successor. In this case, we say that player 1 is the only one to play.

Rational Verification. We now present the studied decision problems related to the concept
of rational verification. Given some threshold c ∈ N, the goal is to verify that a strategy σ0
announced by player 0 guarantees him a cost cost0(π) ≤ c whatever the rational response
π of the environment. By rational response, we mean either a σ0-fixed NE outcome π, or
a σ0-fixed PO play π. The strategy σ0 is usually given as a deterministic Mealy machine.
We can go further: with a nondeterministic Mealy machine, we want to verify whether all
strategies σ0 ∈ JMK are solutions. In the latter case, we speak about universal verification.

▶ Problem 1. Given a reachability game G with an initialized arena, a nondeterministic
Mealy machine M0 for player 0, and a threshold c ∈ N,

If JM0K = {σ0}, the Non-Cooperative Nash Verification problem (NCNV) asks whether
for all σ0-fixed NEs σ, it holds that cost0(⟨σ⟩v0) ≤ c.
The Universal Non-Cooperative Nash Verification problem (UNCNV) asks whether for all
σ0 ∈ JM0K and all σ0-fixed NEs σ, it holds that cost0(⟨σ⟩v0) ≤ c.
If JM0K = {σ0}, the Non-Cooperative Pareto Verification problem (NCPV) asks whether
for all σ0-fixed PO plays π, it holds that cost0(π) ≤ c.
The Universal Non-Cooperative Pareto Verification problem (UNCPV) asks whether for
all σ0 ∈ JM0K and all σ0-fixed PO plays π, it holds that cost0(π) ≤ c.

Rational Synthesis. We consider the more challenging problem of rational synthesis. Given
a threshold c ∈ N, the goal is to synthesize a strategy σ0 for player 0 (instead of verifying
some σ0) that guarantees him a cost cost0(π) ≤ c whatever the rational response π of the
environment. We also consider the simpler problem where the environment cooperates with
the leader by proposing some rational response π that guarantees him a cost cost0(π) ≤ c.

▶ Problem 2. Given a reachability game G with an initialized arena and a threshold c ∈ N,
The Cooperative Nash Synthesis (CNS) problem asks whether there exists σ0 ∈ Σ0 and a
σ0-fixed NE σ such that cost0(⟨σ⟩v0) ≤ c.
The Non-Cooperative Nash Synthesis (NCNS) problem asks whether there exists σ0 ∈ Σ0
such that for all σ0-fixed NEs σ, it holds that cost0(⟨σ⟩v0) ≤ c.
The Cooperative Pareto Synthesis (CPS) problem asks whether there exists σ0 ∈ Σ0 and
a σ0-fixed PO play π such that cost0(π) ≤ c.
The Non-Cooperative Pareto Synthesis (NCPS) problem asks whether there exists σ0 ∈ Σ0
such that for all σ0-fixed PO plays π, it holds that cost0(π) ≤ c.

▶ Example 1. To illustrate these problems, let us study a simple example depicted in Figure 1
with three players: the system, player 0, and two players in the environment, players □ and ⋄.
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v0

v1

⋄
v2

v3

0,□

v4

0, ⋄

v5

□

Figure 1 An example illustrating the
two concepts of rational response.

v0 v1
(1, 0)

(1, 0) (1, 0)

Figure 2 An example showing that PO lasso plays in
the coNCPV problem may have an exponential length.

Player 0 owns the circle vertices, player □ owns the square initial vertex v0, and player ⋄
owns the diamond vertex v2. Each player i has a target set, T0 = {v3, v4}, T□ = {v3, v5} and
T⋄ = {v1, v4}, and a constant weight wi(e) = 1 for all e ∈ E. When a vertex v is in Ti, we
depict the symbol of player i nearby v. As the graph is acyclic, the possible player strategies
are all memoryless. In the sequel, we thus only indicate the successor chosen by the player.

Let us show that σ0 defined by σ0(v1) = v2 is a solution to the NCNS problem with the
threshold c = 3. Given σ0, there exist four distinct strategy profiles σ = (σ0, σ□, σ⋄). When,
for example, σ□(v0) = v2 and σ⋄(v2) = v5, we abusively denote σ as {v0 → v2, v2 → v5}:

{v0 → v2, v2 → v5} is not a σ0-fixed NE because its outcome π1 = v0v2(v5)ω has a infinite
cost for player ⋄ who will deviate from v2 to v4 to get a cost of 2;
similarly, {v0 → v1, v2 → v5} with outcome π2 = v0v1v2(v5)ω is not a σ0-fixed NE;
the profile {v0 → v1, v2 → v4} is a σ0-fixed NE, its outcome is π3 = v0v1v2(v4)ω with
cost□(π3) = +∞, cost⋄(π3) = 1 and cost0(π3) = 3 ≤ c, so if player □ deviates from v1 to
v2, his cost is still +∞, and player ⋄ has no incentive to deviate since cost⋄(π3) is already
the smallest available;
the profile {v0 → v2, v2 → v4} with the outcome π4 = v0v2(v4)ω is also a σ0-fixed NE
and cost0(π4) = 2 ≤ c.

So, σ0 is a solution to the NCNS problem with c = 3, but not with c = 2. It is also a
solution for the CNS problem. One can verify that σ′

0 such that σ′
0(v1) = v3 is a solution to

the NCNS problem with c = 2, since the only σ′
0-fixed NE outcome is π5 = v0v1(v3)ω.

We now show that σ0 is not a solution to the CPS problem with c = 2. Let us consider
the same four outcomes as before. Their cost for the environment are: costenv(π1) = (2,+∞),
costenv(π2) = (3, 1), costenv(π3) = (+∞, 1), and costenv(π4) = (+∞, 2), meaning that
Cσ0 = {(2,+∞), (3, 1)}. Consequently, the only σ0-fixed PO plays are π1 and π2, both giving
a cost of +∞ to player 0. However, the strategy σ′

0 is a solution, as there is only one σ′
0-fixed

PO play, π5 = v0v1(v3)ω, with costenv(π5) = (2, 1) and cost0(π5) = 2.

Main Results. Our main results for Problems 1-2 are the following ones when the rational
responses of the environment are 0-fixed PO plays. One problem was already solved in [11].

▶ Theorem 2. (a) The Non-Cooperative Pareto Verification problem is ΠP
2 -complete.

(b) The Universal Non-Cooperative Pareto Verification problem is PSPACE-complete.
(c) The Cooperative Pareto Synthesis problem is PSPACE-complete.
(d) The Non-Cooperative Pareto Synthesis problem is NEXPTIME-complete [11].

For 0-fixed NE responses of the environment, we obtain the next main results.

▶ Theorem 3. (a) The Non-Cooperative Nash Verification problem is coNP-complete.
(b) The Universal Non-Cooperative Nash Verification problem is coNP-complete.
(c) The Cooperative Nash Synthesis problem is NP-complete.
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(d) The Non-Cooperative Nash Synthesis problem is EXPTIME-hard, already with a two-player
environment. With a one-player environment, it is in EXPTIME and PSPACE-hard.

These complexity results depend on the size |V | of the arena, the number t of players i
(resp. target sets Ti) in case of 0-fixed NE responses (resp. 0-fixed PO responses), the maximal
weight W encoded in binary appearing in the functions wi, the threshold c encoded in binary,
and the size |M | of the Mealy machine M0 (for the verification problems). Note that for all
problems except the NCNS problem, the complexity classes are the same for both qualitative
and quantitative frameworks (see Section 1). Hence, in the case of a unary encoding of the
weights and the threshold c, we get the same complexity classes. Only the most challenging
proofs are provided in the paper, while the other proofs or results derived from the literature
are deferred in the Appendix.

In this paper, we focus on zero or positive weights, because with negative weights, there
are simple examples of one-player games with no NE or no PO plays (thus with no rational
responses). Furthermore, considering any weights leads to the undecidability of the NCNS
and NCPS problems. Those results are obtained by reduction from the undecidability of
zero-sum multidimensional shortest path games [44, 45]. See details in Appendix B.

▶ Theorem 4. With integer weight functions, the Non-Cooperative Nash Synthesis problem
and the Non-Cooperative Pareto Synthesis problem are undecidable.

4 Pareto-Optimality

In this section, we provide the proofs of the upper bounds in Theorem 2. Recall that the
environment is here composed of the sole player 1 having t target sets Ti, and his rational
responses to a strategy σ0 announced by player 0 are σ0-fixed PO plays. The lower bounds
are proved in Appendix C with reductions from QBF or some of its variants [46]. All
those reductions already hold for qualitative reachability games. We thus obtain the same
complexity classes as in Theorem 2 for this class of games, as indicated in Section 1.

To solve the two verification problems (NCPV and UNCPV), we first construct the product
game3 G × M0 of size polynomial in G and M0, and we assume to directly work with this
game, again denoted G. Note that in the product game, when M0 is nondeterministic,
player 0 is able to play any strategy σ0 compatible with M0, and when M0 is deterministic,
the verification problems are simplified as there is a single compatible strategy σ0. The
complement of the (U)NCPV problem has many similarities with the CPS problem:

▶ Problem 3. The complement of the (U)NCPV problem (co(U)NCPV) asks whether there
exists σ0 ∈ Σ0 and a σ0-fixed PO play π such that cost0(π) > c.

Indeed, the statement is the same except that the inequality cost0(π) ≤ c in the CPS problem
is here replaced by cost0(π) > c. To prove the upper bounds of Theorem 2, we thus have
to solve the decision problem “do there exist σ0 ∈ Σ0 and a σ0-fixed PO play π such that
cost0(π) ∼ c ?” with ∼ ∈ {≤, >}. In short, the algorithm to solve the CPS problem and the
complement of the (U)NCPV problem proceeds through the following steps:
1. Guess a play π in the form π = µ(ν)ω in polynomial time. The length of the lasso is

polynomial or exponential, depending on the studied problem. In the latter case, we will
guess a succinct representation of the lasso by using Parikh automata [23, 35].

3 The product of a game with a Mealy machine is recalled in Appendix A.
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2. Compute in polynomial time costenv(π) and verify in polynomial time that cost0(π) ∼ c.
3. Verify that player 0 has a strategy σ0, with π consistent with σ0, that guarantees that

costenv(π) is σ0-fixed PO. This last step will be done in coNP or in PSPACE, depending
on the studied problem.

Therefore, if a strategy σ0 exists as in Step 3, the σ0-fixed PO play π such that cost0(π) ∼ c

is the lasso of Step 1. Let us now provide detailed proofs for these three steps.

4.1 Existence of Lassos
The goal is this section is to prove the next lemma stating that one can always suppose
that π is a lasso. For that purpose, we use a classical approach consisting of removing
cycles [10, 15, 21].

▶ Lemma 5. Let σ0 ∈ Σ0 and π be a σ0-fixed PO play π such that cost0(π) ∼ c. Then
there exist σ′

0 ∈ Σ0 and a σ′
0-fixed PO play π′ = µ(ν)ω such that cost0(π′) ∼ c. Moreover,

Visit(µ) = Visit(µν) and
if cost0(π) ≤ c, then |µ| ≤ (t + 1)|V |, |ν| ≤ |V |, costenv(π′) ∈ {0, 1, . . . , B,+∞}t, with
B = (t+ 2)|V |W ,
if cost0(π) > c, then |µ| ≤ c+ (t+ 1)|V |, |ν| ≤ |V |, costenv(π′) ∈ {0, 1, . . . , B,+∞}t, with
B = (c+ (t+ 2)|V |)W .

Proof. Let π = π0π1 . . . be a σ0-fixed PO play such that cost0(π) ∼ c.
Suppose that cost0(π) ≤ c. Consider, along π, any two consecutive first visits to two

target sets, say Ti and Tj . If there exists m < n such that πn = πm between these two
visits, we remove the cycle π[m,n[ from π. We repeat this process until there are less than
|V | vertices between the two visits, for any such pair Ti, Tj , but also between π0 and the
first visit to a target set. Let us denote π′ the resulting play. Consider now along π′ the last
first visit to a target set, say at index k. We then seek for the first repeated vertex π′

ℓ1
= π′

ℓ2

with k ≤ ℓ1 < ℓ2 after k. In this way, we obtain ν = π′
[ℓ1,ℓ2[ with |ν| ≤ |V | and µ = π′

[0,ℓ1[
with |µ| ≤ (t + 1)|V |. So, we get the required lasso µ(ν)ω such that Visit(µ) = Visit(µν),
cost0(µ(ν)ω) ≤ cost0(π) ≤ c, and costenv(µ(ν)ω) ∈ {0, 1, . . . , B,+∞}t, with B = (t+2)|V |W .

The case cost0(π) > c is treated similarly, except that we cannot remove cycles along
the longest prefix h of π such that cost0(h) ≤ c, as this operation might decrease the cost
of player 0. We thus get |µ| ≤ c + (t + 1)|V |, cost0(µ(ν)ω) > c, and costenv(µ(ν)ω) ∈
{0, 1, . . . , B,+∞}t, with B = (c+ (t+ 2)|V |)W .

It remains to explain how to construct a strategy σ′
0 from σ0 such that π′ = µ(ν)ω is

σ′
0-fixed PO. First, σ′

0 is built in a way to produce π′. Second, we have to define σ′
0 outside π′,

i.e., from any h′v, with v ∈ V , such that h′ is prefix of π′ but not h′v. Let h be such that the
elimination of cycles done in π, restricted to h, leads to h′. We then define σ′

0(h′g) = σ0(hg)
for all histories g ∈ Hist(v). Notice that σ′

0 is the required strategy as the elimination of
cycles in a history or a play decreases the costs. ◀

▶ Example 6. When cost0(π) > c, Lemma 5 provides a bound on |µν| that is exponential in
the binary encoding of c. In Figure 2, we present a small example of a reachability game
showing that this is unavoidable. The initial vertex v0 is owned by player 1, v1 is owned by
player 0, and there are two weight functions w0 and w1 (thus t = 1). Both players have the
same target set: T0 = T1 = {v1}. Notice that player 1 is the only one to play, and a play
π ∈ Plays(v0) is PO if and only if visits T1 (and has costenv(π) = 0). Hence, given a threshold
c, any PO play π with cost0(π) > c is equal to vk

0 (v1)ω with k > c. The length |vk
0v1| is thus

greater than c. Therefore, Step 1 of our decision algorithm for the co(U)NCPV cannot guess
an explicit representation µ(ν)ω if we want to stick to a polynomial time algorithm.
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4.2 Particular Zero-sum Games
Now that we know we can limit our study to lassos π, Step 3 requires to verify that
player 0 has a strategy σ0 ensuring that costenv(π) is σ0-fixed PO. Before going deeper
into this step, we need to study some particular two-player zero-sum games.4 Let A =
(V,E,P, (Vi)i∈P , (wi)i∈{1,...,t}) be an arena with P = {Eve,Adam} and equipped with t

weight functions wi : E → N. We suppose that A is initialized with v0 ∈ V . We fix t target
sets Ti ⊆ V and t constants di ∈ N>0 ∪ {+∞}. We denote by G = (A,Ω) a zero-sum game
whose objective Ω is a Boolean combination of the following objectives:

Reach<di(Ti) = {π ∈ Plays(v0) | costi(π) < di} called bounded reachability objective, and
Safe≥di(Ti) = Plays(v0) \ Reach<di(Ti) called bounded safety objective.

Solving such a game G means to decide whether Eve has a strategy σ such that all plays
π ∈ Plays(v0) consistent with σ belong to the objective Ω. If such a strategy σ exists, we say
that σ is winning for Ω and that the initial vertex v0 is winning for Eve for Ω.

For the PO-check required for Step 3, will see in Section 4.3 that we need to solve the
zero-sum games stated in the next two propositions, where the constants di are encoded in
binary. The second proposition will be used in the general case of nondeterministic Mealy
machines M0 while the first one will be used in the deterministic case. Proposition 7 is a
quantitative extension of a result in [24] about (qualitative) generalized reachability games.

▶ Proposition 7. Let G = (A,Ω) be a zero-sum game with Ω =
⋂

1≤i≤t Reach<di
(Ti) and

Eve is the only one to play. Deciding whether v0 is winning for Eve is an NP-complete
problem.

Proof. We first notice that if Eve has a winning strategy from v0, i.e., there exists a play
π ∈ Ω, then we can eliminate cycles as in the proof of Lemma 5. Therefore, there exists a
lasso π′ = µ(ν)ω ∈ Ω where |µν| ≤ (t + 2)|V |. Thus, to get an algorithm in NP, we guess
such a lasso π′ and verify that costi(π′) < di for each i ∈ {1, . . . , t}. This is possible in
polynomial time with the costs encoded in binary. It is proved in [24] that solving (qualitative)
generalized reachability games with VAdam = ∅ is NP-complete. Our problem is thus NP-hard
by a reduction from the previous problem with the same arena, the weight functions assigning
a null weight to all edges, and by setting (d1, . . . , dt) = (+∞, . . . ,+∞). ◀

The next proposition, of potential independent interest, is easily extended to any positive
Boolean combinations of bounded safety objectives.

▶ Proposition 8. Let G = (A,Ω) be a zero-sum game where Ω = Ω(1) ∪ Ω(2), with Ω(1) =(⋂
1≤i≤t Safe≥di

(Ti)
)

and Ω(2) =
(⋃

1≤i≤t Safe≥di+1(Ti)
)

, and such that +∞ + 1 = +∞.
Then, deciding whether v0 is winning for Eve is in PSPACE.

Proof. We solve the game (A,Ω) by using a recursive algorithm. To know whether v0
is winning for Eve, we run a depth-first search over a finite tree rooted at v0 that is the
(truncated) unraveling of A, and we keep track of the accumulated weights along the explored
branch as a tuple (ci)1≤i≤t, where each ci is encoded in binary. Each explored branch h will
have its leaf decorated by a boolean f(h) = ⊥ (Eve is losing) or f(h) = ⊤ (Eve is winning)
according to some rules that we describe below. Then the depth-first search algorithm
backwardly assigns a boolean to the internal nodes of the tree according to the following rule:
for any hv ∈ V ∗VEve, we have f(hv) = ⊤ if there exists v′ ∈ succ(v) such that f(hvv′) = ⊤,

4 We suppose that the reader is familiar with this concept.
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otherwise f(hv) = ⊥, while for any hv ∈ V ∗VAdam , we have f(hv) = ⊤ if for all v′ ∈ succ(v),
f(hvv′) = ⊤, otherwise f(hv) = ⊥. To have an algorithm executing in polynomial space, the
depth of the tree must be polynomial.

Along a branch, the rules are the following to stop the exploration (the objective Ω may
be modified during the exploration):

If for some i, the current weight ci is such that ci ≥ di + 1 and Ti was not visited, then
we can stop the branch h and set f(h) = ⊤. Indeed, Ω(2) is satisfied, and thus also Ω.
If for some i, we have ci < di while visiting Ti, then Ω(1) is not satisfiable anymore,
and we continue the exploration with the sole objective Ω(2) where the i-th objective
Safe≥di+1(Ti) being ignored (as it is not satisfied).
If for some i, we have ci = di while visiting Ti, then we continue the exploration with
Ω such that Safe≥di(Ti) is removed from Ω(1) (as it is satisfied) and Safe≥di+1(Ti) is
removed from Ω(2) (as it is not satisfied).
If Ω(1) becomes an empty intersection, then we stop the branch h and set f(h) = ⊤.
If Ω(1) has been removed from Ω (because it was not satisfiable anymore) and Ω(2)

becomes an empty union, then we stop the branch h and set f(h) = ⊥.
There is one more case to stop the branch h: when some vertex v is visited twice, i.e.,
h = gvg′v for some g, g′ ∈ V ∗. Then we stop the branch and set f(h) = ⊤. Indeed, we
stand in a better situation in gvg′v than in gv concerning the accumulated weights, as
we consider bounded safety objectives.

The last case happens as soon as the explored branch has length |V | + 1 and the other
cases do not occur. Therefore, as there are t bounded safety objectives in both Ω(1) and Ω(2),
any branch has a length polynomially bounded by t|V |. Moreover, the accumulated weights
ci are all bounded by t|V |W , thus stored in a polynomial space when encoded in binary. We
can thus decide in polynomial space whether v0 is winning for Eve for Ω. ◀

4.3 Pareto-Optimality Check
Let us come back to our reachability games. We can now solve Step 3 where given a lasso π
with costenv(π) ∈ {0, 1, . . . , B,+∞}t (by Lemma 5), we want to verify whether player 0 has
a strategy σ0 guaranteeing that costenv(π) is σ0-fixed PO. If player 1 is the only one to play
in the game, it reduces to verify that costenv(π) is PO. The latter problem is in coNP as
stated in the next lemma, while the former is in PSPACE as stated in Lemma 10.

▶ Lemma 9. Suppose that player 1 is the only one to play. Deciding whether a given cost
p ∈ {0, 1, . . . , B,+∞}t is PO is in coNP.

Proof. The cost p is not PO if there exists a play π′ ∈ Plays(v0) such that costi(π′) ≤ pi

for all i ∈ {1, . . . , t} and costj(π′) < pj for some j ∈ {1, . . . , t}. That is, if for some j, there
exists a play π′ ∈ Ω(j) =

⋂
i ̸=j Reach<pi+1(Ti) ∩ Reach<pj

(Tj). Solving the zero-sum game
(A,Ω) is in NP by Proposition 7. This concludes the proof. ◀

▶ Lemma 10. Given p = costenv(π) ∈ {0, 1, . . . , B,+∞}t being the cost of a play π, deciding
whether player 0 has a strategy σ0 ensuring that p is σ0-fixed PO is in PSPACE.

Proof. To prove the lemma, we first fix a prefix h of π, with v ∈ V , such that hv is
not a prefix of π (hv is called a deviation), and we study the zero-sum game (A,Ω(hv))
with the objective Ω(hv) equal to {π′ ∈ Plays(v) | ¬(costenv(hπ′) < p)}. Let us show that
deciding whether v is winning for player 0 for Ω(hv) is in PSPACE. Notice that for each
i ∈ {1, . . . , t} such that h does not visit Ti, we have, with qi = wi(hv) and +∞ − qi = +∞:
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costi(hπ′) < pi if and only if costi(π′) < pi − qi. Let us rewrite the condition ¬(p′ < p) with
p, p′ ∈ Nt as follows: (∀i ∈ {1, . . . , t} p′

i ≥ pi) ∨ (∃i ∈ {1, . . . , t} p′
i > pi). Hence, the objective

Ω(hv) can be rewritten as
(⋂

1≤i≤t
Occ(h)∩Ti=∅

Safe≥pi−qi
(Ti)

)
∪

(⋃
1≤i≤t

Occ(h)∩Ti=∅
Safe≥pi−qi+1(Ti)

)
.

By Proposition 8, given the constants pi and qi, we can check whether v is winning for
player 0 in polynomial space. Notice that each qi can be computed in polynomial space by
accumulating the weights, with respect to wi, as long as Ti is not visited (as qi ≤ pi).

Second, given two deviations hv, h′v ending with the same vertex v and such that h is
prefix of h′, if Visit(h′) = Visit(h) and v is winning for Ω(hv), then v is also winning for Ω(h′v)

(with the same strategy). Indeed, the constants q′
i for h′v are greater than the constants

qi for hv. We are thus in a “better situation” than in Ω(h′v). So, it suffices to consider
polynomially many deviations hv, as π can visit at most t target sets and there are at most
|V | vertices v.

Finally, deciding whether player 0 has a strategy σ0 ensuring that p is σ0-fixed PO
amounts to solving the zero-sum games (A,Ω(hv)) for polynomially many deviations hv. If
player 0 has a winning strategy σhv for all those games, the required strategy σ0 is defined
as σ0(g) = σhv(vg′) for all histories g such that g = hvg′ with the longest prefix h of π. ◀

4.4 Upper Bounds
We are now ready to prove the upper bounds in Theorem 2 by providing the announced
algorithms for Steps 1-3. The proof is divided according to the considered problem. We need
to recall [23] that a Parikh automaton is a nondeterministic finite automaton (NFA) over an
alphabet Σ and whose transitions are weighted by tuples in Nk, together with a semilinear
set C ⊆ Nk. It accepts a word w ∈ Σ∗ if there exists a run on w ending on an accepting
state such that the sum of all encountered weight tuples belongs to C. The non-emptiness
problem for Parikh automata is NP-complete for numbers encoded in binary [23].

Proof of the upper bounds in Theorem 2. We begin with the CPS problem (Theorem 2.c).
Let us give an algorithm in PSPACE that decides whether there exist σ0 ∈ Σ0 and a σ0-
fixed PO play π such that cost0(π) ≤ c. By Lemma 5, we guess a lasso π = µ(ν)ω with
|µν| ≤ (t + 2)|V |, in time polynomial in |V | and t. Then, we compute p = costenv(π) and
cost0(π) and check whether cost0(π) ≤ c. This can be done in time polynomial in t, |V |, and
the binary encoding of W and c by Lemma 5. Finally, by Lemma 10, we verify in polynomial
space whether player 0 has a strategy σ0 ensuring that p is σ0-fixed PO.

For the NCPV problem (Theorem 2.a), recall that we consider its complementary coNCPV
problem (see Problem 3), and that player 1 is the only one to play. We begin by giving an
algorithm in NP for Step 1 and 2. Lemma 5 does not provide a polynomial bound on the
length of the lasso π = µ(ν)ω due to the threshold c given in binary. However, we will guess
a succinct representation of π by using Parikh automata.

The idea is the following one. Along the prefix µ of the lasso π, some target sets
Tk1 , . . . , Tkn are visited, with n ≤ t, such that the first visits are in vertices πℓ1 , . . . , πℓn with
ℓ1 < · · · < ℓn. And after µ, no more target sets are visited along µν (see Lemma 5). We
start by guessing a sequence v0, v1, . . . , vn, vn+1 of vertices, called markers, with the aim
that v0 is the initial vertex, vi = πℓi

, 1 ≤ i ≤ n, and vn+1 = first(ν). By Lemma 5, we
know that costenv(π) ∈ {0, 1, . . . , B,+∞}t, where B = (c + (t + 2)|V |)W . We thus guess
a tuple (p0, p1, . . . , pt) ∈ {0, 1, . . . , B,+∞}t with the aim that (p1, . . . , pt) = costenv(µ) and
p0 = w0(µ). We also guess for each portion π[ℓi,ℓi+1], i ≤ n,
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a weight q(i)
0 ∈ {0, 1, . . . , B} for player 0 with the aim that q(i)

0 = w0(π[ℓi,ℓi+1]) and
w0(µ) = p0 = Σiq

(i)
0 ,

a “useful” environment weight tuple, i.e., for all j ∈ {1, . . . , t}, a weight q(i)
j ∈ {0, 1, . . . , B}

such that π[0,ℓi] does not visit Tj , with the aim that q(i)
j = wj(π[ℓi,ℓi+1]) and costj(µ) =

pj = Σiq
(i)
j .5

We can guess in polynomial time the sequence v0, v1, . . . , vn, vn+1 and the constants pj , q(i)
j

encoded in binary, as n ≤ t and B = (c+ (t+ 2)|V |)W . We then check in polynomial time
that v0 is the initial state, that each vi belongs to a distinct target set Tki

, 1 ≤ i ≤ n, that
pj = Σiq

(i)
j for each j, and that p0 > c for the given threshold c.6

It remains to check the existence of polynomially many paths:

For each i ≤ n, the existence of a path ρ(i) from vi to vi+1 on a subgraph of A restricted
to some sets V (i) and E(i) of vertices and edges respectively, and to some weight functions,
such that wj(ρ(i)) = q

(i)
j for all j.

The existence of a path from vn+1 to itself (the cycle ν) that visits no new target set
with respect to Tki

, 1 ≤ i ≤ n.
The first check can be done thanks to Parikh automata : one can decide in NP the existence
of a path in a subgraph of A between two given vertices and with a given weight tuple q̄ (the
subgraph is seen as a Parikh automaton with Σ = {#} and C = {q̄}).7 The set V (i) is defined
as V \

(⋃
j>i+1 Tkj

∪
⋃

pj=+∞ Tj

)
, and the set E(i) as (E ∩ V (i) × V (i))\{(v, v′) | v ∈ Tki+1}.

Indeed, for the portion π[ℓi,ℓi+1], we do not allow to prematurely visit a target set Tkj
,

j ≥ i+ 1, except vi+1 ∈ Tki+1 , and there are target sets that we do not want to visit at all.
We also remove the weight function wkj

with j ∈ {1, . . . , i}. The second check can be done
thanks to classical automata, by restricting the set of vertices to V \

(⋃
pj=+∞ Tj

)
. To show

that the coNCPV problem is in ΣP
2 , in the previous algorithm in NP that guesses a lasso

π with costenv(π) = p, we add an oracle in coNP to check whether p is a PO cost thanks
to Lemma 9. As NPcoNP= ΣP

2 , we get that the NCPV problem is in ΠP
2 .

It remains to show that the coUNCPV problem is in PSPACE to get the upper bound of
Theorem 2.b). The approach is to guess a cost p ∈ {0, . . . , B,+∞}t and a length ℓ for the
exponential lasso π of Lemma 5, whose both encodings in binary use a polynomial space. We
guess π vertex by vertex, by only storing the current edge (u, u′), the current accumulated
weight (c0, c1, . . . , ct) on each dimension, and which target sets Ti have already been visited.
At any time, the stored information uses a polynomial space. At each guess, we apply the
reasoning of Lemma 10 to check in polynomial space whether player 0 can ensure that p is a
PO cost from each vertex v ̸= u′ successor of u (i.e., from any deviation of π). We also check
that for each first visit to a target set Ti, we have ci = pi if i ∈ {1, . . . , t}, and ci > c if i = 0.
At each guess, a counter is incremented until reaching the length ℓ, where we stop guessing
π and finally check whether pi = +∞ for each Ti that has not been visited.

This completes the proof as Theorem 2.d is established in [11]. ◀

5 If π[0,ℓi] visits Tj , then costj(π) is already known as costj(π) = costj(π[0,ℓi]).
6 To keep the proof readable, we assume that each vi belongs to one target set Tki

. In general, it could
belong to several target sets. The proof is easily adapted by considering the union of target sets.

7 We do not need to use an oracle here. It suffices to plug the NP algorithm for Parikh automata in ours
as if the required path exists, our algorithm will find it in polynomial time.
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5 Nash Equilibria

We now discuss the proofs of Theorem 3. The environment is here composed of t players
whose rational responses to a strategy σ0 of player 0 are σ0-fixed NE outcomes.

The upper bounds for (U)NCNV and CNS problems given in Theorem 3.a-c are proved
with the same approach as for Pareto optimality, limited to Steps 1-2. There is no need for
Step 3, thanks to a well-known characterization of NE outcomes (based on the values of some
two-player zero-sum games, see e.g. [10, 17] or Appendix D) that is directly checked on the
lasso guessed in Step 1. We need again Parikh automata to guess a succinct representation
of the lasso. The lower bounds for those problems were already known for qualitative
reachability games [28]. See Appendix E.

We thus focus on the NCNS problem (Theorem 3.d). We prove below that this problem
is EXPTIME-hard, already for two-player environments. The decidability is left open. This
decision problem is a real challenge that cannot be solved by known approaches. Indeed,
the technique of tree automata, as used in [21] to show the decidability of several ω-regular
objectives, is not applicable in the context of quantitative reachability. This is because,
while in the scenario of qualitative reachability, the costs are Boolean and can be encoded
within the finite state space of a tree automaton, for quantitative reachability, these costs
are now integers that are not bounded and vary according to the strategy σ0 that is being
synthesized. Consequently, it is not feasible to directly encode constraints within the
states of the automaton in this latter case. Additionally, there is a necessity to enforce
constraints related to subtrees, such as comparing (unbounded) costs between two subtrees.
Generally, incorporating the capability to enforce subtree constraints in tree automata results
in undecidability, with only certain subclasses having a decidable emptiness problem, see
e.g. [3]. Therefore, addressing the general case would necessitate either advancements in the
field of automata theory or an entirely new methodological approach.

However, we are able to solve the practically relevant case of one-player environments for
which we prove that the NCNS problem is PSPACE-hard and in EXPTIME in Appendix F. The
PSPACE-hardness is given by a classical reduction from the subset-sum game problem [47].
The intuition for the EXPTIME-membership is the following: it consists in finding a play π
where cost0(π) ≤ c such that when the only component of the environment deviates from
π, either the system inflicts to the deviating play π′ a cost for the environment such that
cost1(π′) > cost1(π′) meaning that deviating is not profitable, or it ensures a cost for himself
such that cost0(π′) ≤ c. Note that this approach only works for one-player environments.

We are also able to solve the NCNS problem for any number of players in the environment,
for the variant where the rational NE responses of the environment aim to ensure costs
bounded by a given threshold rather than minimizing these costs (this is also arguably an
interesting model of rationality in practice). This is a perspective studied in [43] in the
case of NEs for discounted-sum objectives. We show in Appendix G that this variant is
EXPTIME-complete.

▶ Theorem 11. The Non-Cooperative Nash Synthesis problem where the objective of each
player i ∈ {1, . . . , t} is a bounded reachability objective Reach<di(Ti) is EXPTIME-complete,
and hardness holds even with a one-player environment.

Reduction for Two-Player Environments. We finally prove that the NCNS problem is
EXPTIME-hard, already for a two-player environment (lower bound of Theorem 3.d). The
reduction is given from the countdown game problem, known to be EXPTIME-complete [32].
Given a threshold c ∈ N, a countdown game CG is a two-player zero-sum game played on
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Figure 3 Reduction from the countdown game problem to the NCNS problem (two-player env.).

a directed graph (V,E) where E ⊆ V × N>0 × V . A configuration is a pair (s, k) ∈ V × N,
initially (s0, 0) with s0 an initial vertex, from where player 0 chooses d ∈ N>0 such that there
exists (s, d, s′) ∈ E (we assume that such a d always exists). Player 1 then chooses such
an s′ ∈ V to reach the configuration (s′, k + d). When reaching a configuration (s, k) with
k ≥ c, the game stops and player 0 wins if and only if k = c.8 Player 0 wins the game CG if
he has a strategy σ0 from s0 that allows him to reach some configuration (s, c), whatever the
strategy of player 1.

▶ Theorem 12. The Non-Cooperative Nash Synthesis problem with a two-player environment
is EXPTIME-hard.

Proof. Given a countdown game CG and a threshold c, we build a reachability game G as
depicted in Figure 3 with three players, player 0 (owning the circle vertices of CG), player 1
(owning the square vertices of CG), and player 2 (owning the initial vertex v0 and vertices
D,E). The three weight functions are indicated on the edges, with a null weight on all
edges for player 1. The initial vertex v0 has two outgoing edges, one towards vertex D and
the other one to the initial vertex s0 of CG. Inside CG, players 0 and 1 are simulating the
countdown game. The target sets are T0 = T2 = {D,E} and T1 = V . Thus, for any play,
player 1 gets a cost of 0 and will never have the incentive to deviate from his strategy. The
CG part of the figure contains a slight modification of the given countdown: players 0 and 1
act as in CG, player 1 can exit it by taking the edge to vertex E, the weights d are multiplied
by 2. More precisely, player 0 first selects a transition from a vertex s to some vertex (s, 2d),
with d ∈ N>0, then player 1 responds with a successor s′ such that (s, d, s′) is an edge in
the initial countdown game. At any point (s, 2d), player 1 can exit the CG by going to E,
adding 2d to the cost of player 0 and 1 to the cost of player 2, i.e., it gives the cost tuple
(2k + 2d, 0, 2k + 1) where 2k is the accumulated weight inside CG before exiting it.

Let us show that a strategy σ0 ∈ Σ0 is a solution to the NCNS problem with the threshold
2c if and only if it is winning in the given countdown game and threshold c. We first suppose
that σ0 is a winning strategy for player 0 in the countdown game. We consider this strategy
in G and enumerate all possible plays consistent with σ0:

The play v0(D)ω gives the cost 2c to player 0, thus satisfying the threshold 2c,
No play staying infinitely often in CG is the outcome of a σ0-fixed NE, as it gives an
infinite cost to player 2 while player 2 could deviate in v0 to get a cost of 2c < +∞,
Any play π ultimately reaching E has cost0(π) = 2k + 2d and cost2(π) = 2k + 1, for
some k ∈ N. If 2k + 2d ≤ 2c, then cost0(π) satisfies the threshold constraint. Otherwise,
2k + 2d > 2c, but as σ0 is winning in the initial countdown game, this means that there

8 Classically, the initial configuration is (s0, c) and the accumulated weight k decreases until being ≤ 0.
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was a previous configuration where the costs of both players 0 and 2 were exactly 2c.
This means that cost2(π) = 2k + 1 ≥ 2c+ 1, i.e., π is again not a σ0-fixed NE outcome.

Assume now that σ0 is not winning in the countdown game. Hence, there exists a losing
play consistent with σ0 in this game, that leads to a play π in the grey part of Figure 3 such
that in none of its vertices, the accumulated weight is exactly 2c, i.e., there are two consecutive
steps where the accumulated weight is 2k < 2c and then 2k + 2d > 2c. So, player 1 can exit
between these two steps to reach E. The resulting play π′ has cost0(π′) = 2k + 2d > 2c and
cost2(π′) = 2k + 1 < 2c+ 1, thus cost2(π′) < 2c. Consequently, π′ is a σ0-fixed NE outcome
but cost0(π) > 2c. It follows that σ0 is not a solution to the NCNS problem. ◀

6 Conclusion

In this paper, we have determined the exact complexity class for several rational verification
and synthesis problems in quantitative reachability games, considering both NE and PO
rational behaviors of the environment. However, for the NCNS problem, while we have solved
the important one-player environment case, we have left open the multi-player environment
case. We believe this latter case poses a significant challenge that may require new advances
in automata techniques to be solved.

There are several interesting future works to investigate. (1) We intend to study the
FPT complexity of the studied problems. Notice that some of our lower bounds results
already hold for one-player environments (see the CNS and UNCNV problems in Section 5).
(2) Instead of one reachability objective, player 0 could have several ones and a threshold
on these objectives that he wants to see satisfied. (3) The concept of NE could be replaced
by SPE or by strong NE (that allows collaborations between the players during deviations).
Still, it is important to note that strategies σ0 that are solutions to the non-cooperative
synthesis problems under NE rationality are also solutions under SPE (resp. strong NE)
rationality, as SPEs (resp. strong NEs) constitute a subset of NEs.
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A Example of a Nondeterministic Mealy Machine and Product Game

We first provide an example of a nondeterministic Mealy machine and the way it encodes
strategies.

▶ Example 13. Consider the arena in Figure 4 and the nondeterministic Mealy machine
M0 of player 0 illustrated in Figure 5, formally defined as M0 = (M,m0, δ, τ) such that

M = {m0,m1},
δ(m0, v3) = {m0,m1} and δ(m, v) = {m} for every (m, v) ̸= (m0, v3),

τ(m0, v) =
{

{v1, v3} if v = v1

{v3} if v = v2
, and τ(m1, v) = {v2} if v = v1 or v = v2.

The idea is to start and stay in the memory state m0 and then, once v3 has been visited,
to nondeterministically switch to the memory state m1, or continue staying in the memory
state m0. The memory state defines which edge player 0 is able to choose from v1: either a
nondeterministic choice between v1 and v3 in m0, or v2 in m1.

We now formally define the notion of product arena. Let A = (V,E,P, (Vi)i∈P , (wi)i∈P)
be a weighted arena and Mj = (M,m0, δ, τ) be a (nondeterministic) Mealy machine
for player j ∈ P. Then, the product arena A × Mj is the weighted arena A × Mj =
(V ′, E′,P, (V ′

i )i∈P , (w′
i)i∈P) where

V ′ = (V ×M) ∪ (V × V ×M),
V ′

i = Vi ×M for all i ∈ P\{j}, and V ′
j = (Vj ×M) ∪ (V × V ×M),
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v0 v1 v2

v3

Figure 4 An arena with player 0, player □,
and player ⋄, with no weight displayed.

m0 m1

v0 | ∗
v3 | ∗
v1 | v1
v1 | v3
v2 | v3

v3 | ∗
v0 | ∗
v3 | ∗
v1 | v2
v2 | v2

Figure 5 A nondeterministic Mealy machine
of player 0. The notation v | v′ on the transitions
(m, m′) indicates that m′ ∈ δ(m, v), and if v ∈
V0, that v′ ∈ τ(m, v), otherwise v′ = ∗.

v0,m0 v0, v1,m0 v1,m0

v0, v3,m0

v1, v1,m0

v1, v2,m0

v1, v3,m0

v2,m0

v3,m0

v2, v2,m0

v2, v3,m0v3, v1,m0

v0,m1 v0, v1,m1 v1,m1

v0, v3,m1

v1, v1,m1

v1, v2,m1

v1, v3,m1

v2,m1

v3,m1

v2, v2,m1

v2, v3,m1v3, v1,m1

Figure 6 The product arena of the arena in Figure 4 and the Mealy machine in Figure 5.

E′ is the set of edges defined as
(v,m) → (v, v′,m) if (v, v′) ∈ E, and when v ∈ Vj , it must hold that v′ ∈ τ(m, v),
(v, v′,m) → (v′,m′) if m′ ∈ δ(m, v),

For the edges e′ ∈ E′ of the form (v,m) → (v, v′,m), w′
i(e′) = wi((v, v′)), while for the

edges e′ of the form (v, v′,m) → (v′,m′), w′
i(e′) = 0, for all players i ∈ P.

Intuitively, in vertices (v, v′,m), it is player j who decides how to update the memory state
m according to δ.

When A is initialized with v0 as initial vertex, then the product arena is also initialized
with (v0,m0) as initial vertex. Given a reachability game G = (A, (Ti)i∈P), we also define
the product game G × Mj as the reachability game (A × Mj , (T ′

i )i∈P) such that T ′
i = Ti ×M

for all i ∈ P.
Back to Example 13, the product arena A′ = A × M0 is depicted in Figure 6. We can

see that player 0 has several strategies σ0 ∈ JM0K whose behavior changes according to the
memory state m0 or m1.

B Undecidability

This section aims at proving the undecidability results described in Theorem 4 for the NCNS
and NCPS problems.

▶ Theorem 4. With integer weight functions, the Non-Cooperative Nash Synthesis problem
and the Non-Cooperative Pareto Synthesis problem are undecidable.

For that purpose, we use a reduction from zero-sum multidimensional shortest path games,
that we recall here. We consider an arena A = (V,E, {Eve,Adam}, VEve, VAdam, (wi)i∈{1,...,t})
with two players, Eve and Adam and k weight functions such that for all i ∈ {1, . . . , t},
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T
H

D1

(1, 0, ..., 0)

T

... Dt v′
T

(0, ..., 0)

(0, ..., 0, 1)

(0, ..., 0)

(0, ..., 0)

Figure 7 Reduction from the SP problem to the ESP problem.

wi : E → Z. We then consider a zero-sum G = (A,Ω) whose objective Ω (for Eve)
is to reach a target set9 T ⊆ V . Such a game is called a zero-sum multidimensional
shortest path game [44]. For a play π = π0π1 . . ., we define cost(π) = (+∞)t if π does
not visit T, and cost(π) = (cost1(π), . . . , costt(π)), where costi(π) =

∑ℓ
k=1 wi(πk−1, πk)

and ℓ = inf{n ∈ N | πn ∈ T} otherwise. The Shortest Path problem (SP problem) (resp.
Equality Shortest Path problem (ESP problem)) asks, given such a multidimensional shortest
path game, an initial vertex v0, and a threshold c̄ ∈ Zk, whether there exists a strategy
σEve of Eve such that for every strategy σAdam of Adam, cost(⟨σEve, σAdam⟩v0) ≤ c̄ (resp.
cost(⟨σEve, σAdam⟩v0) = c̄).10 The SP problem is PSPACE-complete [15] with weight functions
E → N and thresholds c̄ ∈ Nk. It is in general undecidable [44, 45], even with c̄ = (0, . . . , 0), by
reduction from the halting problem of two-counter machines, known to be undecidable [38].
We additionally show that the ESP problem is undecidable by a reduction from the SP
problem.

▶ Theorem 14. The Equality Shortest Path problem is undecidable.

Proof. We show the undecidability of the ESP problem by reduction from the SP problem
with the threshold c̄ = 0̄. Let H = (A,Ω) be a multidimensional shortest path game, with
the arena A = (V,E, {Eve,Adam}, VEve, VAdam, (wi)i∈{1,...,t}), the target set T, the initial
vertex v0 ∈ V , and the threshold 0̄. We construct a new shortest path game H′ = (A′,Ω′)
with the arena A′ = (V ′, E′, {Eve,Adam}, V ′

Eve, V
′

Adam, (w′
i)i∈{1,...,t}) illustrated in Figure 7,

the target set T ′, the same initial vertex v0 ∈ V , and the same threshold c̄, where
V ′ = V ∪ {D1, . . . , Dt, vT ′},
V ′

Eve = VEve ∪ {D1, . . . , Dt, vT ′}, V ′
Adam = VAdam,

the set E′ is composed of the edges of E, except that succ(v) = {D1} for every vertex
v ∈ T; E′ also contains the new edges (Di, Di+1) for i ∈ {1, . . . , t − 1}, (Di, Di) for
i ∈ {1, . . . , t}, (Dt, vT ′), and (vT ′ , vT ′),
for every i ∈ {1, . . . , t}, w′

i(e) = wi(e) if e ∈ E, and w′
i assigns 0 to each added edge,

except wi((Di, Di)) = 1,
T ′ = {vT ′}.

Let us show that Eve is winning for the SP problem in H with the threshold 0̄ if and only if
she is winning for the ESP problem in H′ with the same threshold.

Suppose that Eve has a winning strategy σEve in H for the SP problem. Thus, every play
consistent with σEve has a prefix h ending in T, with cost(h) ≤ 0̄. We define a strategy for
Eve in H′ by simulating σEve in H and by extending it after each such history h in a way
that the resulting consistent play π′ satisfies cost(π′) = 0̄ (for each i ∈ {1, . . . , t}, loop on Di

exactly −costi(h) times).
Conversely, suppose that Eve has a winning strategy σ′

Eve to win in H′, and let us simulate
this strategy in H for histories both in H and H′. By hypothesis, every play π′ consistent

9 This target set is unique, contrarily to the particular games introduced in Section 4.2.
10 Recall that we consider here the componentwise partial order over (Z ∪ {+∞})t.
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with σ′
Eve is such that cost(π′) = 0̄. So, by construction, there is a prefix h′ of π′ ending in

T such that, in H, cost(h′) ≤ 0̄ holds. Once T is reached by h′, we extend the new strategy
arbitrarily in H. ◀

v′
1

D

Hv′
2

... v′
t

(0, ..., 0) Player 0 vs player t + 1

(0, ..., 0)

(0, ..
.,

0)

(0, ..., 0)(0, ..., 0)
v0

Figure 8 Reduction from the SP problem
to the NCNS problem.

v′
1

D

H

v′
2t(0, ..., 0)

Player 0 vs player 1

(0, ...
, 0)

(0, ..., 0)

(0, 0, −1, ..., −1)

v0

v v′(0, d1, −d1, ..., dt, −dt)

v′
0

...

(0, −1, ..., −1, 0)

(0, ..., 0, 1)
(0

, 1, 0, ..
.,

0)

Figure 9 Reduction from the ESP problem to the
NCPS problem.

Proof of Theorem 4. (1) We first show the undecidability of the NCNS problem by reduc-
tion from the complement of the SP problem. Let H = (A,Ω) be a multidimensional
shortest path game, with the arena A = (V,E, {Eve,Adam}, VEve, VAdam, (wi)i∈{1,...,t}),
the target set T , and the initial vertex v0 ∈ V . We construct a reachability game
G′ = ((V ′, E′,P, (V ′

i )i∈P , (w′
i)i∈P), (T ′

i )i∈P) with t + 2 players as illustrated in Figure 8,
where:

P = {0, . . . , t+ 1},
V ′ = V ∪ {v′

1, . . . , v
′
t, D},

V ′
i = {v′

i} for all i ∈ P\{0, t+ 1}, V ′
0 = VAdam, and V ′

t+1 = VEve,
E′ = E ∪ {(v′

i, v
′
i+1), (vi, D) | i ∈ {1, . . . , t− 1}} ∪ {(v′

t, D), (D,D), (v′
t, v0)},

the functions w′
i, for all i ∈ P \{0, t+ 1}, are the same as wi in H and assign 0 on the

added edges, and the functions w0 = wt+1 both assign 0 to every edge of E′,
T ′

i = T ∪ {D} for all i ∈ P\{0, t+ 1}, T ′
0 = {D} and T ′

t+1 = V ′.
From the initial vertex v′

1, each player 1, . . . , t has the choice to go to D (and thus giving a
zero cost to everybody) or to go to the game H. In H, player 0 has the role of Adam and
always gets an infinite cost (he gets a zero cost outside H), while player t+ 1 has the role of
Eve and always gets a zero cost (even outside H). Let us prove that there exists a solution
to the NCNS problem in G′ with the threshold c′ = 0 if and only if Adam has a winning
strategy in H with the threshold c̄ = 0̄.

If there exists a strategy σ0 solution to the NCNS problem, it means that for every
σ0-fixed NE outcome π′, cost0(π′) ≤ 0 holds. From σ0, we can construct a strategy σAdam
for Adam. Let σEve be any strategy for Eve. These two strategies generate a play π in H
(from v0), leading to the play π′ = v′

1 . . . v
′
t · π in G′. By construction, this play π′ is not a

0-fixed NE outcome as π′ is consistent with σ0 and cost0(π′) = +∞. Therefore, some player,
say player i, has a profitable deviation along π′. As player t+ 1 has no profitable deviation
(he gets a zero cost for all plays), it follows that i ∈ {1, . . . , t}. That deviation must occur in
vertex v′

i as it is the only vertex controlled by player i along π′. Therefore, the deviating
play gives a zero cost for player i, meaning that costi(π′) > 0. Hence, we get costi(π) > 0 in
H. This shows that σAdam is a winning strategy for Adam in H.

Suppose now that σAdam is a winning strategy for Adam in H. Let σ0 be a strategy of
player 0 in G′, which corresponds to the strategy σAdam. By contradiction, suppose that σ0
is not a solution to the NCNS problem, i.e., there exists a σ0-fixed NE outcome π′ such that
cost0(π′) > 0. As T ′

0 = {D}, it means that π′ = v′
1 . . . v

′
t · π, with π a play in H consistent

with σAdam , thus such that costi(π) > 0 for some i ∈ {1, . . . , t}. This is in contradiction with
π′ being a σ0-fixed NE outcome, as player i has a profitable deviation in v′

i.
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(2) We then show the undecidability of the NCPS problem by reduction from the comple-
ment of the ESP problem. Let again H = (A,Ω) be a multidimensional shortest path game.
We now construct a reachability game G′ = ((V ′, E′, V ′

0 , V
′

1 , (w′
i)i∈{0,...,2t}), (T ′

i )i∈{0,...,2t})
with two players 0 and 1, and 2t reachability objectives from player 1, as illustrated in
Figure 9, where:

V ′ = V ∪ {v′
0, v

′
1, . . . , v

′
2t, D},

E′ = E ∪ {(v′
0, v0), (D,D)} ∪ {(v′

0, v
′
i), (v′

i, v
′
i), (v′

i, D) | i ∈ {1, . . . , 2t}},
V ′

0 = VAdam, V ′
1 = VEve ∪ {v′

0, v
′
1, . . . , v

′
2t, D},

the weight function w′
0 is null; for each i ∈ {1, . . . , 2t}, we have

for each e ∈ E, w′
i(e) = w(i+1)/2(e) if i is odd, and w′

i(e) = −wi/2(e) if i is even,
w′

i((v′
j , D)) = w′

i((D,D)) = 0,
and

w′
i((v′

0, v
′
j)) =

{
1 if j = i,
0 if j ̸= i,

w′
i((v′

j , v
′
j)) =

{
0 if j = i,
−1 if j ̸= i,

T ′
0 = {D}, T ′

i = T ∪ {D} for each i ∈ {1, . . . , 2t}.

We denote by cost′ the cost function in G′. Hence, a weight tuple (d1, d2, . . . , dt) labeling an
edge in H is replaced by the weight tuple (0, d1,−d1, d2,−d2, . . . , dt,−dt) in the new game.
Moreover, a play π in H with cost(π) = (c1, c2, . . . , ct) ∈ (Z∪ {+∞})t has a cost for player 1
in G′ equal to cost′

env(π) = (c1,−c1, c2,−c2, . . . , ct,−ct) if π visits T and (+∞, . . . ,∞)
otherwise. Note that any play π′ in the left part of G′ that visits D has a cost for player 1 of
the form (−c, . . . ,−c, 1,−c, . . . ,−c) where c ∈
N can be arbitrarily large.

Let us prove that there exists a solution to the NCPS problem in G′ with the initial vertex
v′

0 and the threshold c = 0 if and only if Adam has a winning strategy in H for the ESP
problem with the threshold c̄ = 0̄.

If Adam has a winning strategy σAdam in H, then player 0 can construct a strategy σ0 in
G′ that simulates σAdam . Hence, every play π consistent with σ0 going to the right part of G′

satisfies cost′
env(π) ̸= (0, . . . , 0), i.e., either cost′

env(π) = (+∞, . . . ,+∞) or there exists two
consecutive indices, say i and i + 1, such that cost′

i(π), cost′
i+1(π) ∈ Z and cost′

i+1(π) =
−cost′

i(π). W.l.o.g, suppose that cost′
i(π) > 0. Consequently, there is a play π′ = v′

0(v′
i)cDω

for some large enough c ∈ N such that cost′
env(π′) = (−c, . . . ,−c, 1,−c, . . . ,−c) < cost′

env(π).
It means that there is no σ0-fixed PO play going to the right part of G′. Therefore, σ0 is
solution to the NCPS problem since if there exists a σ0-fixed PO play, it must visit D, leading
to a zero cost to player 0.11

Conversely, if Eve has a winning strategy σEve for the ESP problem in H, then for all
strategies σ0 of player 0, player 1 has a strategy σ1 that mimics σEve to generate a play π
going to the right part of G′ with cost′

env(π) = (0, . . . , 0). As for every play π′ visiting D (in
the left part of G′), there exists i ∈ {1, . . . , 2t} such that cost′

i(π′) = 1, it follows that π is a
σ0-fixed PO play, but does not visit T0. Consequently, the instance of the NCPS is false. ◀

C Lower Bounds for Pareto Optimality

We prove the lower bounds of Theorem 2 for qualitative reachability. As a corollary, for the
problems studied in this paper, we get the same complexity class for quantitative reachability

11 Note that there is no σ0-fixed PO play, making σ0 trivially a solution to the NCPS problem.
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as for qualitative reachability.
In the following proofs, it is important to recall that in qualitative reachability games,

the weight of all edges is (0, . . . , 0). Hence, costi(π) = 0 if the play π visits the target set
Ti, and +∞ otherwise. In particular, we can always set the threshold c to 0. In the sequel,
instead of using the notation costi(π) = 0, we will say that Ti is visited.

C.1 Lower bound for the NCPV problem
We begin with the lower bound of Theorem 2.a.

▶ Theorem 15. The Non-Cooperative Pareto Verification problem is ΠP
2 -hard.

We show that there exists a polynomial reduction from a variant of the Σ2QBF problem
to the complementary of the NCPV problem. Given a Boolean formula φ in 3DNF on the set
of variables X ∪ Y , with X and Y being disjoint, the Σ2QBF problem asks whether there
exists a valuation valX of variables of X such that for every valuation valY of variables of
Y , the valuation (valX , valY ) satisfies φ. In other words,

∃X ∀Y [φ(X,Y ) = 1].

This problem is known to be ΣP
2 -complete [46]. The variant, that we call Σ2QBFneg problem,

asks whether φ in 3CNF is not satisfied, i.e.,

∃X ∀Y [φ(X,Y ) = 0].

▶ Corollary 16. The Σ2QBFneg problem with a 3CNF formula φ is ΣP
2 -complete.

We are going to show that the Σ2QBFneg problem reduces to the coNCPV problem (with
threshold c = 0). Hence the NCPV problem will be ΠP

2 -hard. Recall that in this case, player 1
is the only one to play. Our goal is then to show that there exists a PO play π not visiting T0
if and only if the Σ2QBFneg instance is satisfied. Let X = {x1, . . . , xn}, Y = {y1, . . . , ym} be
two sets of distinct variables and φ be a 3CNF Boolean formula on X ∪ Y , i.e., in the form

φ = C1 ∧ · · · ∧ Ck, and ∀i, Ci = (ℓi,1 ∨ ℓi,2 ∨ ℓi,3),

where ℓi,j is a literal, representing either a variable v ∈ X ∪ Y , or its negation ¬v.
The intuition of the reduction is the following one (see Figure 10). From φ, we build two

subarenas, arena A1 where player 1 is “happy” except for one particular target T1 and where
player 0 never visits his target, and arena A2 where player 0 always visits his target and
player 1 visits some targets according to which clauses of φ are satisfied. There are two types
of targets: (i) some to force a specific valX to be considered and (ii) some to check if a clause
Ci is satisfied. In A1, any play represents a valuation of X, and in A2, any play represents a
valuation of X ∪ Y . The idea is to make one clause always false when a valuation valX is
taken in A2, in a way that we get an incomparable cost with the same valuation in A1.

Proof of Theorem 15. Let us first describe the arena of the game and its target sets. All
vertices are owned by player 1 who is thus the only one to play. The initial vertex is v0 with
an edge to v1 to enter A1 and an edge to v2 to enter A2. There are 1 + 2n+ k target sets
(T1, Tx1 , T¬x1 , . . . , Txn

, T¬xn
, TC1 , . . . , TCk

) for player 1 and the target set T0 for player 0:
T0 = T1 = {v2},
for all i ≤ n, Txi

= {x1
i , x

2
i }, T¬xi

= {¬x1
i ,¬x2

i },
for all i ≤ k, TCi = {v1, ℓ

2
i,1, ℓ

2
i,2, ℓ

2
i,3}, where ℓ2

i,j is the literal vertex in A2 representing
the j-th literal ℓi,j of Ci.
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Figure 10 The single-player arena A used in the reduction from the Σ2QBFneg problem.

From the definition of target sets TCi
, any play π in A2 corresponds to a valuation of the

variables of φ, where TCi
is visited if and only if the clause Ci is satisfied.

Let us assume that the instance of the Σ2QBF problem is positive. That is, there exists a
valuation valX of the variables in X such that whatever the valuation valY of the remaining
variables in Y , the formula φ is false. Let π be the play in A1 which corresponds to the
valuation valX . It does not visit T0, and costenv(π) = (+∞, valX , 0, . . . , 0), where valX is
here expressed as a vector of 2n values in {0,+∞} for the targets Tx1 , T¬x1 , . . . , Txn

, T¬xn
.12

Let us show that π is PO, i.e., no play in A has a cost strictly smaller than costenv(π). To
avoid plays with incomparable costs, it is enough to consider plays π′ in A2 which correspond
to the same valuation valX . Such a play π′ represents valX and then some valuation valY .
Since valX is a positive instance to the Σ2QBFneg problem, for each such play π′, there exists
i ≤ k such that π′ does not visit TCi

, as no valuation of Y together with valX satisfies φ. It
follows that costenv(π′) is incomparable to costenv(π), as π visits TCi but π′ does not, and π′

visits T1 but π does not. We conclude that π is PO play that does not visit T0, i.e., with
cost0(π) > c = 0.

Let us now assume that there exists a PO play π in A not visiting T0. It is thus a play
in A1 that corresponds to a valuation valX of the variables of X in φ. And there is no play
in A2 with a strictly smaller cost. It follows that all play in A2 corresponding to the same
valuation valX do not visit at least one target TCi . Therefore, valX is a positive instance
of the Σ2QBFneg problem, as for all valuations valY of Y , together valX and valY do not
satisfy φ. ◀

C.2 Lower bound for the CPS and UNCPV problems
We here prove that both UNCPV and CPS problems are PSPACE-hard (lower bound of
Theorem 2.b-c).

▶ Theorem 17. The Cooperative Pareto Synthesis problem and the Universal Non-Cooperative
Pareto Verification problem are both PSPACE-hard.

12 Recall: 0 in case of a target visit, and +∞ otherwise.
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Figure 11 The arena used in the reduction from coQBF.

We first prove the theorem for the CPS problem. We then explain what to modify to get
the reduction for the coUNCPV problem. For this purpose, we need to define a variant of
the QBF problem: the coQBF problem with 3CNF formulas. An instance of this problem is
in the form

Q1x1 . . . Qnxn [φ = 0]

where φ is a 3CNF formula over the variables {x1, . . . , xn}, and Qi ∈ {∀,∃} for all i.

▶ Lemma 18. The coQBF problem with 3CNF formulas is PSPACE-complete.

Proof. The PSPACE-membership is clear by the same algorithm as for QBF. The PSPACE-
hardness is obtained through two consecutive reductions. For the first one, given some QBF
instance Q1x1 . . . Qnxn [φ = 1] with φ a 3CNF Boolean formula, we simply construct the
negation of this instance:

Q′
1x1 . . . Q

′
nxn [¬φ = 1],

where Q′
i = ∀ (resp. Q′

i = ∃) if Qi = ∃ (resp. Qi = ∀). Notice that ¬φ is a 3DNF formula.
For the second reduction from the previous instance, we use the property “φ is true if and
only if ¬φ is false”, hence we construct

Q′
1x1 . . . Q

′
nxn [¬(¬φ) = 0].

This concludes the proof, by ¬(¬φ) = φ and by construction. ◀

Proof of Theorem 17. We begin with a reduction from the coQBF problem to the CPS
problem (with threshold c = 0). Let Q1x1 . . . Qnxn [φ = 0] be a coQBF instance with
φ = C1 ∧ · · · ∧ Cn a 3CNF formula on the set of variables {x1, . . . , xn} such that Ci =
(ℓi,1 ∨ ℓi,2 ∨ ℓi,3) for all i ≤ n. We construct an arena A as shown in Figure 11 with n+ 1
target sets (T1, TC1 , . . . , TCn) for the environment:

V0 = {Qi | Qi = ∃}, V1 = V \V0, and v0 is the initial vertex,
T0 = {v1},
T1 = {Q1}, TCi

= {v1, ℓi,1, ℓi,2, ℓi,3} for all i ≤ n.

Suppose first that the coQBF instance is positive. Let player 0 mimic the behavior of
the existential player as a strategy σ0 in A1 and let us show that the play π = v0(v1)ω with
cost0(π) = 0 and costenv(π) = (+∞, 0, . . . , 0), is σ0-fixed PO. Any play π′ in A1 consistent
with σ0 represents a valuation of φ. By hypothesis, it makes φ unsatisfiable, i.e., there
is an unsatisfied clause Ci, meaning that TCi

is not visited by π′. The cost costenv(π′) is
incomparable to costenv(π), as TCi is visited in π and not in π′, while T1 is visited in π′ and
not in π.



28 As Soon as Possible but Rationally

Let us suppose that the CPS instance is positive. Then there exists σ0 ∈ Σ0 and a σ0-fixed
PO play π where cost0(π) = 0. Necessarily, π = v0(v1)ω, as this is the only play with a
zero cost for player 0. By hypothesis on σ0, for any play π′ consistent with σ0 and ending
in A1, it is not the case that costenv(π′) < costenv(π). But since T1 is visited by π′ but not
by π, costenv(π′) must be incomparable with costenv(π), i.e., it cannot visit TCi

, for some i.
Therefore, for all such plays π’, i.e., for all responses to the universal player in φ, there exists
i ≤ n such that Ci is not satisfied, thus making φ unsatisfied.

Finally, let us adapt the previous proof to the coUNCPV problem. We construct the same
game except that T0 = {Q1}. The proof remains the same as the play π = v0(v1)ω has now
cost0(π) = +∞. ◀

D Characterization of Nash Equilibria outcomes

For some results of this paper, we need to recall a characterization of NE outcomes for
quantitative reachability [10]. This section aims to recall this characterization based on
values of some particular two-player zero-sum games. See the survey [17] for more details
about this characterization for different kinds of objectives.

Given a reachability game G and a fixed strategy σ0 of player 0, we denote by Val∗: V →
N ∪ {+∞} the function giving, for any vertex v ∈ Vi, i ∈ P \{0}, the value of player i in
the zero-sum setting of player i opposed to the coalition of the other players, which is the
lowest cost, with resepct to wi, that player i can ensure against this coalition. These values
can be computed in polynomial time through a value iteration algorithm, and belong to
{0, . . . , |V |W,+∞} [12, 14, 34].

Formally, to define the value Vali(v) of a vertex v for player i against the coalition P\{0, i}
denoted −i, we first need to define the lower value Vali(v) and the upper value Vali(v) of a
vertex v in the following way:

Vali(v) = sup
σ−i

inf
σi

costi(⟨σ0, σi, σ−i⟩v), Vali(v) = inf
σi

sup
σ−i

costi(⟨σ0, σi, σ−i⟩v).

Then, when for every vertex v, Vali(v) = Vali(v) holds, the game is said to be determined
and the value is Vali(v) = Vali(v) = Vali(v). This is the case for our reachability games [10].
Then, for each vertex v, we define Val∗(v) = Vali(v) for the player i such that v ∈ Vi.

▶ Definition 19. A play π = π0π1 . . . is Visit Val∗-consistent for a set of players I ⊆ P if
for all i ∈ I and for all n ∈ N, we have (πn ∈ Vi ∧ i ̸∈ Visit(π<n)) ⇒ costi(π≥n) ≤ Val∗(πn).

The next result is a direct corollary of [10, Theorem 15] stating the characterization of
NE outcomes. We simply ignore values of player 0 to get the equivalent result for 0-fixed
NEs.

▶ Proposition 20 ([10]). Let π be a play. Then π is the outcome of a 0-fixed NE if and only
if π is Visit Val∗-consistent for the set of players P\{0}.

E Complexity of the CNS and (U)NCNV Problems

We study in this section the (U)NCNV and CNS problems (Theorem 3.a-c).
Some results are easily obtained as there already exist similar approaches for closely

related problems. This is the case for the CNS problem. For the particular case of qualitative
reachability, it is proved in [21] that the CNS problem is NP-complete (by using automata
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techniques). This result is extended in [28] for arenas where the weights on the edges are all
equal to 1, by using Proposition 20.

We also show two proofs of hardness for the CNS and UNCNV problems, that already
hold when the environment is limited to one player. Then, we see how to adapt the work
from [7], where the authors proved the coNP-completeness of the (U)NCNV problems when
all weights on the edges are equal to 1. The adaptation is nontrivial and requires the use of
Parikh automata for the same reason as in Section 4.

▶ Theorem 21. The Cooperative Nash Synthesis problem for reachability games is NP-
complete, even with one-player environments.

To prove this theorem, we will use the characterization of 0-fixed NE outcomes from
Appendix D.

Proof of the upper bound of Theorem 21. We use the same approach as in Lemma 5 to
show that, given a Visit Val∗-consistent play π for the set of players P \{0}, we can build
a Visit Val∗-consistent play π′ = µ(ν)ω for P\{0} where |µν| is polynomial in |V | and |P|.
Thus, we first compute in polynomial time the value of each vertex. Then we guess a lasso
π′ = µ(ν)ω as above and use Proposition 20 to check in time polynomial in |V | and |P|
whether there exists a strategy σ0 such that π is a σ0-fixed NE since values and weights
along π are given in binary. ◀

We now prove the lower bound of Theorem 21, that already holds for one-player environ-
ments, with a reduction from the bi-partition problem which is known to be NP-complete [33].
Given S = {a1, . . . , an} a subset of N, the bi-partition problem asks whether there exists
A,B ⊆ S such that A and B is a partition of S and

∑
ai∈A ai =

∑
ai∈B ai. Notice that if

the answer to this problem is positive, then T =
∑

ai∈S ai is even. Therefore we can suppose
that T is always even, which allows us to work with T/2 ∈ N.

v0L v1 . . . R
(0, T/2) (0, 0)

(a1, 0)

(0, a1)

(an, 0)

(0, an)

Figure 12 Reduction for the NP-hardness for
the CNS problem with a one-player environment

v0L v1 . . . R
(0, T/2 · (2n− 1)) (0, 0)

(a1, T )

(0, T − a1)

(an, T )

(0, T − an)

Figure 13 Reduction for the NP-hardness
for the coUNCNV problem with a one-player
environment

Proof of the lower bound of Theorem 21. Figure 12 shows the arena used for the reduction
from the bi-partition problem to the CNS problem with the threshold c = T/2. The target
sets for player 0 and player 1 are respectively T0 = {R} and T1 = {L,R}.

Suppose that the instance of the bi-partition problem is positive. Player 0 can set a
strategy σ0 such that the play π = v0v1 . . . (R)ω satisfies cost0(π) = cost1(π) = T/2. Notice
that cost0(π) ≤ c and that π is a σ0-fixed NE outcome, because if player 1 deviates at v0,
then the resulting π′ = v0(L)ω has cost1(π′) = T/2.

Suppose now that there exists a 0-fixed NE outcome π with cost0(π) ≤ T/2. Necessarily, it
goes to the right and reaches R, since otherwise cost0(π) = +∞. Moreover, cost1(π) ≥ T/2 as
cost0(π)+cost1(π) = T . Finally, since π is a 0-fixed NE outcome, player 1 has no incentive to
deviate to the left from v0, i.e., cost1(π) ≤ T/2. It follows that cost0(π) = cost1(π) = T/2. ◀

With small adaptations to the previous reduction, we get the coNP-hardness of the
UNCNV problem.



30 As Soon as Possible but Rationally

▶ Corollary 22. The Universal Non-Cooperative Nash Verification problem for reachability
games is coNP-hard, even with one-player environments.

Proof. We use the same kind of reduction as for the CNS problem. The game used for the
reduction to the coUNCNV problem is illustrated in Figure 13, such that c = T/2 − 1 and
T0 = T1 = {L,R}.

If there exists a partition {A,B} of S such that
∑

A ai =
∑

B ai = T/2, then we have a
play π going to the right where cost0(π) = T/2, cost1(π) = nT − T/2 = T/2(2n− 1), i.e., π
is a 0-fixed NE outcome, so we have finished. For the other direction, if there exists a 0-fixed
NE outcome π, this play must go to the right otherwise the cost of player 0 would be 0 ≤ c.
Thus, cost0(π) ≥ T/2 and by definition of NE, cost1(π) ≤ T/2(2n− 1). Let a, b such that
cost0(π) = a and cost1(π) = nT − b, clearly we have a+ b = T by construction, and a ≥ T/2
and b ≥ T/2 by hypothesis, which means that a = b = T/2. ◀

The next result generalizes a result from [7], where the authors showed the coNP-
completeness for the (U)NCNV problem when the weights on the edges are all equal to 1.
Having integer weights encoding in binary induces a new difficulty: we cannot characterize
σ0-fixed NE outcomes by using polynomial-size lassos. Indeed, Example 6, used with PO
rationality, is also applicable in the context of NE rationality, with one-player environments.

To prove the result, we will guess a succinct representation of a solution π of exponential
size as we did in Section 4 thanks to Parikh automata. We will not dive into all tricky
technical details and stick to an intuition based on the lasso-sufficiency result of such a
solution as presented in [7].

▶ Theorem 23. The (Universal) Non-Cooperative Nash Verification problem for reachability
games is coNP-complete.

Proof (sketch). The lower bound is already proved in from [7]. Let us consider the upper
bound. As for other verification problems, we use the complementary problem and show that
the co(U)NCNV problem belongs to NP. We suppose in the following that we already have a
game G which is the product of the given game and the (non)deterministic Mealy machine of
player 0.

The main goal is to guess a play π outcome of a σ0-fixed NE such that cost0(π) > c.
By [7], we deduce that it suffices to guess a lasso π = µ(ν)ω such that costi(π) ∈ {0, . . . , (2t+
1)|V |W,+∞} for every player i. We use again Parikh automata to guess such a lasso in
polynomial time (by using markers and portions as in the proofs of Section 4.4).

We need two kinds of markers. The first kind of markers are vertices that aim to represent
the first occurrence of a target set along π (including T0 if π visits T0). To verify that π is a
σ0-fixed NE, we also need markers that are vertices with a finite value, with the aim that every
time πm ∈ Vi is a marker with Val∗(πm) < +∞, we must have costi(π≥m) ≤ Val∗(πm) (see
Proposition 20). The total number of markers is polynomial as it is bounded by |P| + |V |.13

The algorithm works as follows. First, it computes in polynomial time the value of each
vertex. Then, it guesses whether the lasso will visit T0 or not, and guess its markers as
explained above. For each portion between any two consecutive markers, it also guesses a
tuple of weights in {0, . . . , (2t+ 1)|V |W,+∞} that aim to represent the player weights for
this portion. Finally, the algorithm performs a series of checks in polynomial time: It verifies
that the markers are vertices with finite values or belonging to target sets (including T0 if it

13 Notice that, as in Section 4.4, we also need markers for the initial vertex and the first vertex of the
cycle ν.
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v0L . . . R
(0, T + 1)

(T −A1, A1)

(T −B1, B1)

(T − E1, E1)

(T − F1, F1)

(T −A2, A2)

(T −B2, B2)

(T − En, En)

(T − Fn, Fn)

Figure 14 Reduction from the subset-sum game problem to the NCNS problem (one-player env.).

guessed a visit to T0). It verifies the existence of the portions with the guessed weight tuples
(excluding the visit to certain vertices to remain consistent with the markers). It finally
checks that the characterization of Proposition 20 holds and that the cost for player 0 is at
least c in case of a visit to T0. ◀

F Complexity of the NCNS Problem with One-Player Environments

This section aims at proving Theorem 24, i.e., showing that the NCNS problem is PSPACE-
hard and in EXPTIME when the environment is composed of only one player, player 1
(Theorem 3.d with one-player environments). Imposing this restriction drastically simplifies
the problem.

▶ Theorem 24. The NCNS problem with a one-player environment is PSPACE-hard and
belongs to EXPTIME.

F.1 PSPACE-hardness
To show the PSPACE-hardness result stated in Theorem 24, we use a reduction from a
problem called the subset-sum game problem. An instance of this problem is a formula ψ as

∀P1 ∈ {A1, B1}, ∃P2 ∈ {E1, F1}, . . . ,∀P2n−1{An, Bn}, ∃P2n ∈ {En, Fn},
2n∑

i=1
Pi = T,

where T,Ai, Bi, Ei and Fi are natural integers encoded in binary, for all i ∈ {1, . . . , n}. We
can view this formula as a game with two players, the existential and the universal players,
where the existential player wins if the formula is satisfied, i.e., if the valuations of each
picked variable Pi sum up to T . This problem is PSPACE-complete [47].

Notice that we can suppose w.l.o.g. that every integer Ai, Bi, Ei and Fi is ≤ T . If there
exists i such that either Ai > T or Bi > T , or Ei > T and Fi > T , then the formula is never
satisfied. Indeed either the universal player selects a valuation exceeding T for his variable,
or the existential player has no choice but to exceed T , and thus

∑2n
i=1 Pi > T . And when

Ei > T and Fi ≤ T (resp. Ei ≤ T and Fi > T ), the existential player must select Fi (resp.
Ei) to hope to win, in which case we modify ψ by replacing Ei by Fi (resp. Fi by Ei).

Proof of Theorem 24 (Hardness). We use a reduction from the subset-sum game problem
and construct a game G as in Figure 14 and set the threshold c = (2n − 1)T . Player 0,
owning the circle vertices, represents the existential player of the subset-sum game, while
player 1, owning the square vertices, represents the universal player. The initial vertex is v0
and the target sets are T0 = {R} and T1 = {R,L}. The two weight functions are indicated
on the edges. Notice that each weight is positive or zero, from our previous remark. At
the initial vertex, player 1 either chooses the edge towards L and gets a cost of T + 1 while
imposing an infinite cost to player 0, or he simulates with player 0 a play of the subset-sum
game by alternatively picking an integer, until reaching the vertex R.
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If the existential player has a strategy to satisfy ψ, then player 0 can simulate this strategy
in G, which is a solution σ0 to the NCNS problem. Indeed, any play consistent with σ0 either
reaches L with a cost of T + 1 for player 1 or reaches R with a cost of T for player 1. So, the
σ0-fixed NE outcomes are those reaching R, ensuring a cost of (2n− 1)T = c for player 0.

For the other implication, notice that for any play π reaching R, we have cost0(π) +
cost1(π) = 2nT . Let σ0 be a solution to the NCNS problem, that is, such that the outcome
π of every σ0-fixed NE satisfies cost0(π) ≤ (2n− 1)T . Then, by our remark, cost1(π) ≥ T .
However, we cannot have cost1(π) ≥ T + 1, since otherwise the play π visiting L would be
the outcome of a σ0-fixed NE with cost0(π) = +∞, in contradiction with σ0 being a solution
to the NCNS problem. We conclude that cost1(π) = T , and thus cost0(π) = (2n− 1)T , i.e.,
the existential player can simulate the strategy σ0 to satisfy the formula ψ. ◀

F.2 EXPTIME-Membership
We now prove the EXPTIME-membership result stated in Theorem 24.

The heart of the decidability of the NCNS problem with player 0, the system, and player 1,
the environment, comes with the following result.

▶ Lemma 25. Let σ0 ∈ Σ0 and d = min{cost1(π) | π play consistent with σ0}. Then for all
play π consistent with σ0, π is the outcome of a σ0-fixed NE if and only if cost1(π) = d.

Moreover, when d = +∞, every play consistent with σ0 is a σ0-fixed NE.

Proof. Let π be the outcome of a σ0-fixed NE. By minimality of d, we have cost1(π) ≥ d, and
by definition of an NE, cost1(π) ≤ cost1(π′) for all plays π′ consistent with σ0. In particular,
it is also verified for a play π′ such that cost1(π′) = d. Therefore, we get cost1(π) = d.

Conversely, let π be such that cost1(π) = d. By minimality of d, we have cost1(π′) ≥
cost1(π) for all plays π′ consistent with σ0, which means that π is the outcome of an NE.

The remark when d = +∞ is a direct consequence of the minimality of d. ◀

Lemma 25 indicates that we can associate a unique minimum d ∈ N ∪ {+∞} to each
strategy σ0 of player 0. From now on, we will often do this link between such a strategy σ0
and its minimum cost d for player 1, written explicitly dσ0 when needed.

Another important result is a characterization of solutions to the NCNS problem, thanks
to the concept of witness. This idea already appears in [25] for mean-payoff games with a
one-player environment.

▶ Definition 26 (Witness). Let c ∈ N. A c-witness π is a play such that cost0(π) ≤ c and for
every deviation14 hv of π, v is winning for player 0 in the zero-sum game (A,Ω(hv)) such
that

Ω(hv) = {π′ ∈ Plays(v) | cost0(hπ′) ≤ c or cost1(hπ′) > d}

with d = cost1(π).

In other words, π is a c-witness if cost0(π) ≤ c and when player 1 is deviating from π, player 0
can either ensure that his own cost is smaller than c or punish player 1 by imposing him a
cost strictly greater than d.

14 We recall that hv is a deviation of π if h is a prefix of π but not hv.
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In other words, π is a c-witness if cost0(π) ≤ c and when player 1 is deviating from π,
player 0 can either ensure that his own cost is smaller than c or punish player 1 by imposing
him a cost strictly greater than d.15

▶ Lemma 27. Let c ∈ N be a threshold. Then there exists a solution σ0 to the NCNS problem
with the threshold c if and only if there exists a c-witness.

Proof. Suppose that there exists a c-witness π. We can construct a strategy σ0 such that it
produces π (i.e., π is consistent with σ0), and for all deviations hv of π, σ0 acts as a winning
strategy of player 0 in the zero-sum game (A,Ω(hv)) from the history hv. Let us show that
this strategy σ0 is a solution to the NCNS problem. For each σ0-fixed NE (σ0, σ1), we have
by definition of NE that cost1(⟨σ0, σ1⟩v0) ≤ cost1(π). Since π is a c-witness, it follows that
cost0(⟨σ0, σ1⟩v0) ≤ c.

Let us now suppose that there exists a solution σ0 to the NCNS problem. We extract by
Lemma 25 a σ0-fixed NE outcome π such that cost0(π) = dσ0 and claim that π is a c-witness.
First, notice that cost0(π) ≤ c as σ0 is solution. Then, for all strategies σ1 of player 1 such
that π′ = ⟨σ0, σ1⟩v0 is different from π, we have cost1(π′) ≥ dσ0 (again by Lemma 25). So
either cost1(π′) > dσ0 or cost1(π′) = dσ0 , i.e., σ1 is a σ0-fixed NE, and thus, cost0(π′) ≤ c as
σ0 is solution. Thus for any deviation hv of π, σ0 is a winning strategy for player 0 in the
game (A,Ω(hv)). ◀

Despite this useful characterization, notice that a c-witness is not necessarily the outcome
of an NE, because player 1 might have a smaller cost elsewhere, but in that case, we keep a
cost of player 0 smaller than c along any other play profitable for player 1.

▶ Lemma 28. Let c ∈ N and let π be a c-witness. Then there exists a c-witness π′ such that
either cost1(π′) = +∞ or cost1(π′) ≤ 2|V |W .

Proof. Let π = π0π1 . . . be a c-witness such that cost1(π) = d. Let ki = inf{n ∈ N | πn ∈ Ti}
for i ∈ {0, 1}, where k0 < +∞ by hypothesis. If cost1(π) = +∞, then π′ = π. Otherwise, we
have k1 < +∞.

Suppose first that k0 ≤ k1.
If there is a cycle π[n,m[ before k0, i.e., m < k0, then we can remove it from π and
still keep a c-witness π′. Indeed, costi(π′) = costi(π) − wi(π[n,m]), thus cost0(π′) ≤ c

and cost1(π′) = d − w1(π[n,m]). Moreover, consider any deviation hv of π such that h
contains the cycle π[n,m[. Then, from a winning strategy for player 0 from v in (A,Ω(hv))
with Ω(hv) = {ρ ∈ Plays(v) | cost0(hρ) ≤ c or cost1(hρ) > d} and for h′v the deviation
of π′ obtained by removing π[n,m[ from h, we get that v is winning in (A,Ω(h′v)) with
Ω(h′v) =

{
ρ′ ∈ Plays(v) | cost0(h′ρ′) ≤ c− w0(π[n,m]) or cost1(h′ρ′) > d− w1(π[n,m])

}
.

If there exists a cycle between k0 and k1, we can similarly remove it and again keep
a c-witness. In this case, notice that Ω(hv) is always satisfied as h visits T0 and thus
cost0(hρ) ≤ c.

Suppose now that k1 < k0, then we remove cycles before k1 as we did previously with cycles
before k0.

In both cases, by repeatedly removing cycles as explained above, we obtain a c-witness
π′ such that cost1(π′) ≤ 2|V |W . ◀

15 In the objective Ωhv, we need to subtract the weights w0(hv) and w1(hv) as we start to play from v,
after history h, in the game (A, Ωhv).
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Witnesses are useful, nevertheless, it would be easier to deal with qualitative objectives
instead of quantitative ones. We will show that working with bounded objectives as Ω(hv)

amounts to working with qualitative objectives in a specific arena, called extended, where we
add accumulated weights in the vertices as well as players who visited their target set. This
extended arena is defined for any number t of players in the environment, but used with
t = 1 in the proof of the EXPTIME membership of Theorem 24.

▶ Definition 29 (Extended arena). Let G = (A, (Ti)i∈P) be a reachability game with A =
(V,E,P, (Vi)i∈P , (wi)i∈P) and B = (Bi)i∈P ∈ Nt+1 be a family of bounds, one for each
player. The extended arena AB of G is the tuple (VB , EB ,P, (VB,i)i∈P), where

a vertex v′ ∈ VB is in the form v′ = (v, c0, . . . , ct, F ) with v ∈ V , ci ∈ {0, 1, . . . , Bi,+∞}
for all i ∈ {0, . . . , t}, and F ⊆ P,
((v, c0, . . . , ct, F ), (v′, c′

0, . . . , c
′
t, F

′)) ∈ EB if
(v, v′) ∈ E,

ci =


ci if i ∈ F or ci = +∞
ci + wi((v, v′)) if i ̸∈ F , ci < +∞ and ci + wi((v, v′)) ≤ Bi

+∞ otherwise,
F ′ = F ∪ {i ∈ P | v′ ∈ Ti},

VB,i = {(v, c0, . . . , ct, F ) ∈ VB | v ∈ Vi} for all i ∈ {0, . . . , t}.

Moreover, if v0 is the initial vertex of A, then v′
0 = (v0, 0, . . . , 0, F ) is the initial vertex of

AB with F = {i ∈ P | v0 ∈ Ti}.

In this definition, the component ci is the cumulative weight of player i. It is set to +∞
when it exceeds Bi. The set F is the set of all players who visited their target set. When
i ∈ F , the component ci is frozen and no longer changes. Notice that the new arena AB is
not weighted.

We clearly have a bijection between PlaysA(v0) and PlaysAB
(v′

0). The useful difference is
that the extended arena can express bounded objectives from the original game as qualitative
objectives in the extended arena, e.g., saying that a play π ∈ PlaysA(v0) has costi(π) ≤ d,
when B ≥ d, is equivalent to saying that its corresponding play in PlaysAB

(v′
0) visits some

vertex (v, c0, . . . , ct, F ) where ci ≤ d and i ∈ F . For a play π ∈ PlaysAB
(v′

0), we denote π|V
the corresponding play in PlaysA(v0) by taking its projection on the V -component. We also
denote by |AB | the size of the extended arena equal to |V | · 2t+1 ·

∏
i∈P(Bi + 2).

We are now able to prove Theorem 24.

Proof of Theorem 24 (Easiness). By Lemma 27, it is enough to check the existence of
a c-witness π in EXPTIME. Moreover, by Lemma 28, we can assume that cost1(π) ∈
{0, . . . , 2|V |W,+∞}.

We first treat the particular case where there exists a strategy σ0 for player 0 such that
all plays ρ ∈ PlaysA(v0) consistent with σ0 satisfy cost0(ρ) < c+ 1. The existence of such a
strategy (winning in a two-player zero-sum game with a bounded reachability game) can be
checked in polynomial time [34].

If this algorithm concludes the nonexistence of such a strategy σ0, we know by Lemma 25
that there is no solution σ0 to the NCNS problem such that dσ0 = +∞. In that case, we
consider the next second algorithm: Iterate for each d ∈ {0, . . . , 2|V |W} the following steps
1. Compute the extended arena A(c,d) and build two objectives:

Ω0 = {π ∈ PlaysA(c,d)
(v′

0) | π visits a state (v, c0, c1, F ) with c0 ≤ c and 0 ∈ F},
Ω1 = {π ∈ PlaysA(c,d)

(v′
0) | π visits a state (v, c0, c1, F ) with c1 > d}.
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(d1, d1)

(d2 , d2 )

Figure 15 Reduction from countdown games to the NCNS problem with two players and bounded
reachability objectives.

2. Consider the zero-sum game (A(c,d),Ω) with Ω = Ω0 ∪ Ω1, and compute the set W0 of
vertices that are winning for player 0 for Ω. As Ω is a (qualitative) reachability game,
the set W0 can be computed in time polynomial in |A(c,d)| (see e.g. [27]), i.e., in time
polynomial in |V | and exponential in c and W since c and W are encoded in binary.

3. Construct the subarena of A(c,d) restricted to W0, and check the existence of a path π

(the required c-witness) visiting a vertex (v, c0, c1, F ) where c0 ≤ c and 0 ∈ F as well as
a vertex (v′, c′

0, c
′
1, F

′) with c′
1 = d and 1 ∈ F ′. This can be done by a graph traversal

algorithm in time polynomial in |W0|, so in exponential time. If such a path exists, stop
the algorithm, otherwise proceed to the next iteration.

This completes the proof since every step is in EXPTIME and there is an exponential
number of iterations. ◀

Notice that with a little more work, we could find the smallest threshold c for which there
exists a solution σ0 to the NCNS problem if such a solution exists.

G Variant of the NCNS Problem

To better understand how difficult the NCNS problem is, we look at the variant where the
rational NE responses of the multi-player environment aim to ensure costs bounded by a
given threshold rather than minimizing these costs. This is a perspective studied in [43] in
the case of NEs for discounted-sum objectives. The authors call those objectives satisficing
objectives, establishing a duality with optimization objectives. For some reward functions
such as discounted-sum, players might deviate for arbitrarily minuscule rewards. Hence,
satisficing objectives prevent this behavior since a player is either happy or unhappy, there is
no more optimization.

We prove that, when the players have such bounded reachability objectives, the NCNS
problem becomes EXPTIME-complete. This result holds already for a one-player environment.

▶ Theorem 11. The Non-Cooperative Nash Synthesis problem where the objective of each
player i ∈ {1, . . . , t} is a bounded reachability objective Reach<di

(Ti) is EXPTIME-complete,
and hardness holds even with a one-player environment.

Proof. For the EXPTIME upper bound, we only give a sketch of the proof. Given an objective
Reach<di

(Ti) for each player i ∈ {1, . . . , t} and Reach<c+1(T0) for player 0, we can construct
an adapted version of the Büchi tree automata from [21]. In short, their tree automaton
works with qualitative reachability objectives. It guesses at each vertex v ∈ Vi along a branch
whether v is in the winning region of player i, and the move of a winning strategy from
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v. Then, it keeps track of deviations in case player i does not follow the guessed winning
strategy. The objective of the tree automaton is a Büchi objective verifying whether every
guess is done consistently with the infinite branch, i.e., when a player always followed a
winning strategy, he actually wins; but it also verifies whether either player 0 visits T0 or a
player i has a profitable deviation, i.e., player i saw the winning region, deviated and loses.

The needed changes to shift to bounded reachability objectives are the extension of the
tree automaton with accumulated weights, as it is done for the extended arena defined in
Appendix F, to keep track of players who are not able to satisfy their bounded reachability
objectives because they exceed their bound di. Guesses of winning regions and winning
strategies are done as before. Therefore, the constructed tree automaton has an exponential
size, and deciding whether a Büchi tree automaton has an empty language can be done in
time polynomial in this tree automaton. In other words, our algorithm is in EXPTIME.

The lower bound is obtained by reduction from the countdown game problem to our
problem with one player in the environment. Given a countdown game CG and a threshold c,
we build a game G as illustrated in Figure 15 (where the grey part contains the countdown
game), with two players 0 and 1 and where the objective of both players is Reach<c+1({v1, v2}).
Player 0 owns the circle vertices and can decide to exit the grey part of the figure to go to
the vertex E. Player 1 owns the square vertices, in particular E from which he can go either
to v1 or to v2. The weight function of each player is indicated on the edges. The initial
vertex of G is the initial vertex of the countdown game.

Suppose first that player 0 has a winning strategy σ0 in CG. We can simulate it in G
and make player 0 exit CG when his cost is exactly c. From E, if player 1 chooses to go to
v1, then he gets a cost of c+ 1, and thus his objective Reach<c+1({v1, v2}) is not satisfied.
Therefore, every σ0-fixed NE outcome π necessarily goes to v2, and thus we get cost0(π) = c

showing that σ0 is solution to the modified NCNS problem.
Suppose now that player 0 has no winning strategy in the countdown game. Then, for

every strategy σ0 in CG, there is a play π consistent with σ0 that never reaches a cost of
exactly c in CG. Let us consider the possible cases in G. If π stays forever in CG, we have
cost0(π) > c. If player 0 leaves π to go to E, the current accumulated weight in E is either
k < c or k > c.

In k < c, going to v1 or v2 leads to two σ0-fixed NE outcomes, as the objective of player 1
is satisfied in both outcomes. And when going to v1, the cost for player 0 is k+ c+ 1 > c.
If k > c, we have again two σ0-fixed NE outcomes when going to v1 or v2, but with the
objective of player 1 being not satisfied. And for both outcomes, the cost for player 0 is
> c.

Hence there exists no solution to the modified NCNS problem. ◀
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